
FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Writing tests using JUnit5

JUNIT

JUnit is the standard for writing tests in Java. We can use it to write
for any layers.

Let us see how to write test for the controllers.

We continue with the ProductController and the test will be written in
the package test and the name of the class is the controller name
with “test” appended

For testing ProductController, we will use ProductControllerTest.

PREREQUISITES

Before you start, make sure you have the following installed:
Java 17+ (java -version)
Maven or Gradle (mvn -v or gradle -v)
VS Code IDE
Spring Boot Project

Install These VS Code Extensions
In VS Code, go to Extensions (Ctrl+Shift+X or Cmd+Shift+X) and
install:

Extension Pack for Java (by Microsoft)
Spring Boot Extension Pack (optional but recommended)
Test Runner for Java (by Microsoft)
Debugger for Java
Language Support for Java(TM) by Red Hat

PRODUCTCONTROLLER

SRC/MAIN & SRC/TEST + DEPENDENCY

USE RESTTEMPLATE
It is a Spring Boot-specific test utility used for integration testing of REST
endpoints.

Requires your test class to have:

@SpringBootTest(webEnvironment =
SpringBootTest.WebEnvironment.RANDOM_PORT)
The RANDOM_PORT ensures the server runs on a free port so tests won’t
conflict with other apps.

You use it only in tests, not in production code.
It’s a great way to test the controller layer without mocks.

PRODUCTCONTROLLERTEST

EXPLANATION

@SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT)
Start a mini test server

@Test
From JUnit 5 (org.junit.jupiter.api.Test), marks a test method.

restTemplate
A Spring class for performing HTTP requests during tests.

getForEntity()
Makes an HTTP GET request to your endpoint.

ResponseEntity<Product>
Captures HTTP response metadata and body.

assertEquals, assertNotNull
Standard JUnit assertion methods to validate results.

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

MOCKITO - INTRO

In Spring Boot, your controller usually depends on a service layer
(ProductService) to do the actual business logic.

With Mockito, you can:
Replace the real ProductService with a mock.
Define predefined behaviors (what it returns when called).
Focus tests on controller logic only, without hitting a database or
real services.

Remember : controller —> Service —> Hibernate / ORM —> DB

MOCKMVC

MockMvc is a core component of the Spring MVC Test framework.

It allows you to perform simulated HTTP requests to a Spring controller
and verify the response without starting a full web server. It allows you to
do :

The URL mapping
The controller method execution
The HTTP status code
The content type
The JSON or HTML content in the response

In essence, it acts like a client making an HTTP call to your application and
lets you inspect the results.

SETUP: ADD MOCKITO TO YOUR PROJECT

We use @WebMvcTest to test only the controller layer of our
application

MockMvc is the tool we use to simulate HTTP requests.

The when().thenReturn() syntax is where we program the mock object.
We tell Mockito exactly what to return when a specific method is called
on the mock service. This is how we control the behavior of the
dependency during the test.

HOW TO USE IT ?

MOCKITBEAN
The new annotation to use is @MockitoBean.

By using @MockitoBean, your tests will be more consistent and future-
proof (previously MockBean).

What @MockitoBean does
Spring creates a Mockito mock of ProductService.
The mock is injected into your controller instead of the real bean.
When the controller calls productService.getProductById(1), it calls
the mock, not the real implementation.

HOW TO WRITE YOUR TESTS ?

Your test class is preceded by the line :

@WebMvcTest(ProductController.class)
public class ProductControllerWithMTest {

}

Each test throws Exception
 @Test
 void testGetProduct() throws Exception {
}

HOW TO WRITE YOUR TESTS ?

 @Autowired
 private MockMvc mockMvc;

 @MockitoBean
 private ProductService productService;

All your tests contain two sections :
when(productService.yourMethod()).thenReturn(output);

 mockMvc.perform(endpoints)
 .andExpect()
 .andExpect()

.....

CUSTOMISE OUTPUT

Write the beforeEach method which is called on test(s) your run

@BeforeEach
 void beforeEach(TestInfo testInfo) {
System.err.println("**");
 System.out.println(">>> Starting test: " +
testInfo.getDisplayName());
System.err.println("**");
 }

GET A PRODUCT BY ID

GET ALL PRODUCTS

TESTING A NON-EXISTING PRODUCT

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

CUCUMBER - INTRO

Cucumber tests shifts our focus from "how a method works" to "how a
user interacts with the system."

This approach is known as Behavior-Driven Development (BDD)

An approach where you define the behavior of the application from
the user's perspective before you write any code.

This directly supports the core Agile principle of collaboration and
shared understanding.

HOW TO USE CUCUMBER ?

Three steps

Feature Files (.feature): You write plain-text files that describe the
application's behavior using a language called Gherkin.

Step Definitions: The developer writes the Java code that "glues" each line
of the Gherkin feature file to the actual logic (MockMvc)

Test Runner: A JUnit test class acts as the entry point, telling Cucumber to
find and run all the feature files.

OVERALL

FEATURE IN GHERKINS -> JAVA CODE -> MOCKITO (UNIT TESTING) -> JUNIT (INTEGRATION

TESTING)

Feature: Add new products to the inventory
 As an authenticated user
 I want to add products to the inventory
 So that I can keep track of all available products

Written by Product Owner / Business Analyst

Next step ⟶ Developers

EXAMPLE #1 - REQUIREMENTS

EXAMPLE 1 - FUNCTIONALITY
Scenario 1: Successfully add a new product with all required details

 Given I am authenticated as an administrator

 When I submit a request to add a product with the following details:
 | name | description | price
 | "Laptop" | "High-performance laptop" | 1200

Then the product "Laptop" should be created successfully
 And the system should respond with a 201 status code

HOW TO WRITE YOUR TESTS ?

Scenario 2: Fail to add a product due to missing required fields

Given I am authenticated as an administrator

 When I submit a request to add a product with the following
details:
 | name | description | price |
 | "Monitor" | "4K display" | 350 |

Then the product "Monitor" should not be created
 And the system should respond with a 400 status code

AUTOMATED ACCEPTANCE TESTS

Cucumber scenarios are, at their core, automated acceptance
tests. They verify that the functionality meets the business
requirements.

Developers can use these tests to ensure their code works
as expected.
QA engineers can use the same tests to validate the feature.

In short, Cucumber acts as a bridge between the business
requirements and the technical implementation

THE ORDER OF A BDD TEST RUN - 1

1. Cucumber reads the .feature file.

The process begins with the plain-language .feature file you wrote -
it is the single source of truth for the test's behavior.

2. JUnit launches the Cucumber test runner.

You typically have a test runner class annotated with
@RunWith(Cucumber.class) or a similar JUnit 5 annotation.

JUnit is the framework that starts the process. It hands control over
to the Cucumber engine.

THE ORDER OF A BDD TEST RUN - 2

3. Cucumber finds and executes the matching Step Definitions.
 This is done for each Given, When, and Then step in the .feature file

4. The Java method uses MockMvc or Mockito to test your
application code.
This is where the actual work happens. Inside the Java method that
Cucumber called, you write the code that performs the verification.

MockMvc is used for integration testing
Mockito is used for unit testing

5. Cucumber reports the result.
After all the Java code for a scenario has run, Cucumber collects
the results of the assertions

THE BDD WORKFLOW IN A TEAM

1. Defining the requirements - understanding what should de done
Meeting with Product owner - QA - Developer

2: The QA/Tester Writes the Feature File

3: The Developer Creates the Step Definitions

4: The Developer Writes the Application Code

5: The Tests Become Part of the CI/CD Pipeline

This is carried out automatically by Github actions or Jenkins while
deploying to DockerHub !! If any test fails, then Deployment fails

SCOPE OF JUNIT VS CUCUMBER

Type Purpose Example

JUnit Test
(ProductControllerTest.java)

Test internal logic, small isolated
behaviors

"Does /products/1 return HTTP 200?"

Cucumber Test
(Product.feature +
ProductStepDefinitions.java)

Test business workflows in
human-readable form

"When I add a product, it should appear in
the product list"

LET’S TEST CUCUMBER

1. The Maven Dependency (pom.xml)
 <dependency>

 <groupId>io.cucumber</groupId>
 <artifactId>cucumber-java</artifactId>
 <version>7.16.1</version>
 <scope>test</scope>

 </dependency>

 <dependency>
 <groupId>io.cucumber</groupId>
 <artifactId>cucumber-junit-platform-engine</artifactId>
 <version>7.16.1</version>
 <scope>test</scope>

 </dependency>

LET’S TEST CUCUMBER

2. Create the following folders in test
resources

/features : Contains your feature file (ex hello.feature)
/ : Contains cucumber.properties

your_package/runner
Contains your cucumber test file (ex CucumberTest.java)

your_package/steps
Contains your steps files (ex HelloSteps.java)

