N

FULL STACKDEV

e S —

spring
boot

Writing tests using JUnith

Presented by:

Rajeev Khoodeera

e JUnit is the standard for writing tests in Java. We can use it to write
for any layers.

e | et us see how to write test for the controllers.
e We continue with the ProductController and the test will be written in
the package test and the name of the class is the controller name

with “test” appended

e For testing ProductController, we will use ProductControllerTest.

¢ Before you start, make sure you have the following installed:
o Java 17+ (Java -version)
o Maven or Gradle (mvn -v or gradle -v)
o VS Code IDE
o Spring Boot Project
e |Install These VS Code Extensions
o In VS Code, go to Extensions (Ctrl+Shift+X or Cmd+Shift+X) and
install:
= Extension Pack for Java (by Microsoft)
= Spring Boot Extension Pack (optional but recommended)
= Test Runner for Java (by Microsoft)
= Debugger for Java
= | anguage Support for Java(TM) by Red Hat

@GetMapping("/products/{id}")

public ResponseEntity<Product> getProduct(@PathVariable int id) {
Product product;
product = productService.getProductById(id);

if (product.getName().length() ==
return ResponseEntity.badRequest().build();

return new ResponseEntity<>(product, HttpStatus.OK);
}

@GetMapping("/products")

public List<Product> getAllProducts() {
List<Product> products = productService.getAllProducts(),;
return products;

}

v JAVA PROJECTS

v ["gpringboot

v & src/mainfjava
> {(Swgom.clouadce.springboot
v {} com.cloudace.springboot.contro...
42 ProductController + M
> {} com.cloudace.springboot.model
> {} com.cloudace.springboot.services
> B _seefMiamrasources
v & srcftestfjava
> W,_com.clouda€e.springboot
v {} com.cloudace.springboot.contro...
42 ProductControllerTest

pom.xml X

pom.xml

dependency
groupId>org.springframework.boot</groupId
artifactId>spring-boot-starter-test</artifactId
scope>test</scope

/dependency

oIt is a Spring Boot-specific test utility used for integration testing of REST
endpoints.

e Requires your test class to have:

e @SpringBootTest(webEnvironment =
SpringBootTest.WebEnvironment.RANDOM_PORT)

e The RANDOM_PORT ensures the server runs on a free port so tests won’t
conflict with other apps.

o You use it only in tests, not in production code.
o It’s a great way to test the controller layer without mocks.

@SpringBootTest (webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class ProductControllerTest H

@Autowilired

private TestRestTemplate restTemplate;

Run Test | Debug Test | Qodo Gen: Test this method | Qodo Gen: Test this method | Qodo Gen: Test this method
@lest

public void TestGetProduct() {
ResponseEntity<Product> response = restTemplate.getForEntity(url: "/products/1", responseType: Proc

assertEquals (HttpStatus.0K, response.getStatusCode()); // so if evertyhing is ok, we get 200
assertNotNull(response.getBody());
assertEquals(expected: "Product 1", response.getBody().getName());

Run Test | Debug Test | Qodo Gen: Test this method | Qodo Gen: Test this method | Qodo Gen: Test this method
@Test

public void TestGetAllProducts() {
ResponseEntity<Product[]> response = restTemplate.getForEntity(url: "/products", responseType: Proc
assertEquals(HttpStatus.0K, response.getStatusCode()); // so if evertyhing is ok, we get 20¢
assertNotNull(response.getBody());
assertEquals(expected: 2, EEEBER§§;3§E§39X£1'lﬁﬂgfﬂ-;

e @SpringBootTest(webEnvironment = WebEnvironment. RANDOM_POR
o Start a mini test server
e @Test
o From JUnit 5 (org.junit.jupiter.api.Test), marks a test method.
e restTemplate
o A Spring class for performing HTTP requests during tests.
e getForEntity()
o Makes an HTTP GET request to your endpoint.
e ResponseEntity<Product>
o Captures HTTP response metadata and body.
e assertEquals, assertNotNull
o Standard JUnit assertion methods to validate results.

O

FULLS

TACK DEV

s

* |In Spring Boot, your controller usually depends on a service layer
(ProductService) to do the actual business logic.

e \With Mockito, you can:
o Replace the real ProductService with a mock.
o Define predefined behaviors (what it returns when called).
o Focus tests on controller logic only, without hitting a database or
real services.

e Remember: controller —> Serrtee——ttberrate—oORM—DB

e MockMvc is a core component of the Spring MVC Test framework.

e [t allows you to perform simulated HTTP requests to a Spring controller
and verify the response without starting a full web server. It allows you to
do:

o The URL mapping

o The controller method execution

o The HTTP status code

o The content type

o The JSON or HTML content in the response

e |[n essence, it acts like a client making an HTTP call to your applicatien and
lets you inspect the results.

dependency
groupId>org.mockito</groupld
artifactId>mockito-core</artifactld
version>5.4.0</version
scope>test</scope
dependency

dependency
groupId>org.mockito</groupld
artifactId>mockito-junit-jupiter</artifactlId
version>5.4.0</version
scope>test</scope
dependency

e We use @WebMvcTest to test only the controller layer of our
application

e MockMvc is the tool we use to simulate HTTP requests.

e The when().thenReturn() syntax is where we program the mock object.

e We tell Mockito exactly what to return when a specific method is called
on the mock service. This is how we control the behavior of the
dependency during the test.

e The new annotation to use is @MockitoBean.

e By using @MockitoBean, your tests will be more consistent and future-
proof (previously MockBean).

e \What @MockitoBean does
o Spring creates a Mockito mock of ProductService.
o The mock is injected into your controller instead of the real bean.
> When the controller calls productService.getProductByld(1), it calls
the mock, not the real implementation.

e Your test class is preceded by the line:

o @WebMvcTest(ProductController.class)
o public class ProductControllerWithMTest {

O

° }

e Fach test throws Exception
o (@Test
o void testGetProduct() throws Exception {

° }

@Autowired
private MockMvc mockMvc;

@MockitoBean
private ProductService productService;

All your tests contain two sections :
o when(productService.yourMethod()).thenReturn(output);

o mockMvc.perform(endpoints)
o .andExpect()
o .andExpect()

e Write the beforeEach method which is called on test(s) your run

e @BeforeEach

e void beforeEach(TestIinfo testinfo) {

o Syste m.ertr. p rl ntln (”**") .

J

e System.out.println(">>> Starting test: " +

testinfo.getDisp

e System.err.printl

* }

ayName());

N ("**”) .
J

@Test
public void testGetProductById() throws Exception {
Product product = new Product(id: 1L, name: "Laptop", description: "A high-end laptop", price: 1500.

when(productService.getProductById(id: 1)).thenReturn(product);

mockMvc.perform(get(uriTemplate: "/products/1")
.andExpect(status().isO0k()
.andExpect(jsonPath(expression: "$.name").value(expectedValue: "Laptop")
.andExpect (jsonPath(expression: "$.description").value(expectedValue: "A high-end laptop")
.andExpect (jsonPath(expression: "$.price").value(expectedValue: 1500.00));

@lTest
public void testGetAllProducts() throws Exception {

Product productl new Product(id: 1L, name: "Laptop", description: "This 1s a sample product descr
Product product2 = new Product(id: 2L, name: "Mouse', description: "This is another product descrip

when(productService.getAllProducts()).thenReturn(java.util.Arrays.asList(productl, product2));

mockMvc.perform(get(uriTemplate: "/products")
.andExpect(status().1is0k()
.andExpect(jsonPath(expression: "$[0].name").value(expectedValue: "Laptop")
.andExpect(jsonPath(expression: "$[0].description").value(expectedValue: "This is a sample
.andExpect(jsonPath(expression: "$[0].price").value(expectedValue: 19.99));

@lest
void testGetProductNotFound() Exception

int nonExistingProductId = 999;
mockMvc.perform(get("/products/" + nonExistingProductId)
.andExpect(status().isNotFound());

=z

\
\§

e

O

FULL STACKDEV

cucumber

Presented by:

Rajeev Khoodee

e Cucumber tests shifts our focus from "how a method works" to "how a
user interacts with the system.”

e This approach is known as Behavior-Driven Development (BDD)

e An approach where you define the behavior of the application from
the user's perspective before you write any code.

e This directly supports the core Agile principle of collaboration and
shared understanding.

¢ Three steps

e Feature Files (.feature): You write plain-text files that describe the
application's behavior using a language called Gherkin.

e Step Definitions: The developer writes the Java code that "glues" each line
of the Gherkin feature file to the actual logic (MockMvc)

e Test Runner: A JUnit test class acts as the entry point, telling Cucumber to
find and run all the feature files.

OVERALL
FEATURE IN GHERKINS -> JAVA CODE -> MOCKITO (UNIT TESTING) -> JUNIT (INTEGRATION
TESTING)

e Feature: Add new products to the inventory
o As an authenticated user
o [want to add products to the inventory
o So that | can keep track of all available products

e Written by Product Owner / Business Analyst

e Next step - Developers

Scenario 1: Successfully add a new product with all required details
Given | am authenticated as an administrator
When | submit a request to add a product with the following details:

name | description | price
"Laptop" | "High-performance laptop" [1200

Then the product "Laptop" should be created successfully
And the system should respond with a 201 status code

e Scenario 2: Fail to add a product due to missing required fields
e Given | am authenticated as an administrator

e When | submit a request to add a product with the following
details:

e | name | description | price |

e |"Monitor"|"4K display" | 350 |

e Then the product "Monitor" should not be created
e And the system should respond with a 400 status code

e Cucumber scenarios are, at their core, automated acceptance
tests. They verify that the functionality meets the business
requirements.

o Developers can use these tests to ensure their code works
as expected.
o> QA engineers can use the same tests to validate the feature.

e |n short, Cucumber acts as a bridge between the business
requirements and the technical implementation

e 1. Cucumber reads the .feature file.

e The process begins with the plain-language .feature file you wrote -
It is the single source of truth for the test's behavior.

e 2. JUnit launches the Cucumber test runner.

e You typically have a test runner class annotated with
@RunWith(Cucumber.class) or a similar JUnit 5 annotation.

e JUnitis the framework that starts the process. It hands control over
to the Cucumber engine.

e 3. Cucumber finds and executes the matching Step Definitions.
e Thisis done for each Given, When, and Then step in the .feature file

e 4. The Java method uses MockMvc or Mockito to test your
application code.
e This is where the actual work happens. Inside the Java method that
Cucumber called, you write the code that performs the verification.
o MockMvc is used for integration testing
o Mockito is used for unit testing

e 5. Cucumber reports the result.
o After all the Java code for a scenario has run, Cucumber collects
the results of the assertions

e 1. Defining the requirements - understanding what should de done
o Meeting with Product owner - QA - Developer

o 2: The QA/Tester Writes the Feature File

e 3: The Developer Creates the Step Definitions
e 4: The Developer Writes the Application Code
e 5: The Tests Become Part of the CI/CD Pipeline

This is carried out automatically by Github actions or Jenkins while
deploying to DockerHub !! If any test fails, then Deployment fails

JUNIT

Purpose

CUCUMBER

Example

JUnit Test
(ProductControllerTest.java)

Test internal logic, small isolated
behaviors

"Does /products/1 return HTTP 200?"

Cucumber Test
(Product.feature +
ProductStepDefinitions.java)

Test business workflows in
human-readable form

"When | add a product, it should appear in
the product list"

e 1. The Maven Dependency (pom.xml)

e <dependency>
<groupld>io.cucumber</groupld>
<artifactld>cucumber-java</artifactid>
<version>7.16.1</version>
<scope>test</scope>

e </dependency>

e <dependency>
<groupld>io.cucumber</groupld>
<artifactld>cucumber-junit-platform-engine</artifactid>
<version>/16.1</version>
<scope>test</scope>

e </dependency>

¢ 2.Create the following folders in test
O resources
m /features . Contains your feature file (ex hello.feature)
m /. Contains cucumber.properties

o your_package/runner
= Contains your cucumber test file (ex CucumberTest.java)

Vv SIc
> main

o your_package/steps -

\ java/ca/cloudace/backend

m Contains your steps files (ex HelloSteps.java) W—

RunCucumberTest.java

HelloSteps.java

BackendApplicationTests.java
v resources

> features

= cucumber.properties

