s —

O

FULL STACKDEV

spring
boot

Spring Boot Architecture

s Allow developers to focus more on business logic rather than
boilerplate setup.

o Key features of Spring Boot:
o Auto-configuration: Automatically configures your Spring application
based on the JARs on your classpath.

o Standalone: Embeds a web server like Tomcat directly, so you can just run
your application as a JAR.

o No XML configuration: Largely relies on annotations and convention over
configuration.

e @SpringBootApplication // This is the magic annotation!
o Tells Spring to look for other components & configurations,
allowing it to find your controllers, services, etc.

* FrontEnd <=> (Controller -> Service -> Repository -> Database)

e SpringApplication.run(.class, args)
o This static method is responsible launching a Spring
application from a Java main method

<dependency>
o <groupld>org.springframework.boot</groupld>
o <artifactld>spring-boot-starter-web</artifactid>
</dependency>

<dependency>

o <groupld>org.springframework.boot</groupld>
o <artifactld>spring-boot-starter-test</artifactld>
o <scope>test</scope>

</dependency>

¢ Spring Boot uses application.properties to manage configuration.
o |n src/main/resources
m application.properties

e \When you work in different environment, you can have different
versions of this file like :
o application-dev.properties
= for development
o application-prod.properties
m for production

controller
service v B src/mainfjava

repository v {} ca.cloudace.section3.model
% Student

v {} ca.cloudace.section3.repository

package name:

o
ca.cloudace v {} ca.cloudace.section3.service

arficactld : %4 StudentService
o sectiond %4 Students

O StudentRepository

> B src/main/resources

e Create a folder named : git
e |Inside this you create another folder : universityapp
e |[nside university app, there will be two projects :
o packend
o frontend

@ EXPLORER

v UNIVERSITYAPP

e S0, overall: N
e git -
o universityapp
= backend (spring boot app) —» a git repo
= frontend (one of angular, react, vue - see later sections)

N

FULL STACKDEV

e S —

spring
boot

Writing REST Endpoints

Presented by:

Rajeev Khoodeera

e Controllers handle incoming HTTP requests and send responses.

e Spring Boot offers two main controller types:
o @Controller — For traditional web apps (HTML pages).
o @RestController — For REST APIs (JSON / XML).

e Both are used to separate presentation logic from business logic.

O

¢ @Controller (Web or MVC Controller)
e Used in traditional web applications that return HTML pages.
e \Works with Thymeleaf, JSP, or other template engines.
e Returns view names, not raw data.
http://localhost:8080/students
@Controller

public class StudentController { S .

@GetMapping("/students")
public String listStudents(Model model){
return "home"; // Resolved to home.html

}
}

o Used in RESTful APIs that return JSON or XML responses.
e Commonly used for frontend-backend communication or mobile app

APIs.

e Combines @Controller + @ResponseBody, so it returns data directly.
@RestController
@RequestMapping("/api/students")
public class StudentController {

@GetMapping R .
public ResponseEntity<List<Student>> getAllStudents() {
_Ist<Student> students = studentService.getAllStudents();

return new ResponseEntity<>(students, HttpStatus.OK);

http://localhost:8080/api/students

}
}

e @PostMapping
o Create a new record in database

e @PutMapping
o Update an existing record using its primary key

e @DeleteMapping
o Delete an existing record using its primary key

N

FULL STACKDEV

spring
boot

Using postman

e —
Ny
S

Presented by:

Rajeev Khoodeeram,

{
f
!
£

Postman is a GUI tool to test and interact with APIs.

Allows sending HTTP requests: GET, POST, PUT, DELETE, etc.
Useful for testing REST APIs during development.
Can test local apps (localhost) or deployed APIs.

http://localhost:8080/students http://localhost:8080/api/students

Params Auth He: 's (8) Body Scripts Settings : Params Auth Headers (6) Body Scripts Settings

200 OK 38 : 3) [e8] Save Response oeo

[es] Save Response

~ Visualize

html: .
i] =T

] na“_le 1 .

>Student List</t1
charset="UTF-8"

11>Student List

table border="1

h>First Name h><th>Last Name

N

FULL STACKDEV

spring
boot

Application properties

e —
Ny
S

Presented by:

Rajeev Khoodeeram,

{
f
!
£

s Spring Boot uses application.properties to manage configuration.

e WWe’ll learn to customize settings like server port, database
connections, and logging.

e Understanding this file lets you tailor your app for different

environments easily. By environments, we mean : developer, testing,
etc

e application.properties (or application.yml) is the heart of Spring
Boot's externalized configuration.

e This is one of the most basic but crucial configurations.

e Scenario: You want your application to run on a port other than
the default 8080, or you want to add a context path.

e # Server port (default is 8080)
e server.port=9090

e # Context path for the application (e.g.,http://localhost:9090/my-app/hello)
e server.servlet.context-path=/my-app

Scenario: Different database settings or APl endpoints for dev vs. prod.
Files:
o src/main/resources/application.properties (default/common
properties)
o src/main/resources/application-dev.properties
o src/main/resources/application-prod.properties

application.properties (Default):

Default settings

app.environment=Default

server.port=8080
spring.datasource.url=jdbc:h2:mem:defaultdb

application-dev.properties:

Development specific settings

app.environment=Development

server.port=8081
spring.datasource.

Dev runs on a different port
url=jdbc:h2:mem:devdb

application-prod.properties:

Production specific settings

app.environment=Production
server.port=8080 # Prod might use default or a specific external

port

e spring.datasource.url=jdbc:mysqgl://prod-db:3306/prod_db
e spring.jpa.hibernate.ddl-auto=none

O

Don't auto-create schema in proad

e Spring Boot checks for the property:
o spring.profiles.active=dev
e This can be set in several ways:
e Option1 - Inside application.properties
o This will make Spring load application-dev.properties in addition to the
default one.

e Option 2 - Using Command Line
o When you run your app:
® java -jar myapp.jar --spring.profiles.active=prod
e Option 3 - Inyour IDE (e.g., IntelliJ or VS Code)

o Add it to Run Configuration » VM Options:
= -Dspring.profiles.active=prod

e

O

FULL STACKDEV

spring
boot

Complete REST implementation

Controller: Handles HTTP requests, delegates business logic to the
service layer, and returns HTTP responses.

Service: Contains the core business logic. It orchestrates operations,
potentially involving multiple repositories.

Repository: Handles direct database interaction.

| v JAVA PROJECTS
v "] section3
Model = Entity = Database table g ol
> {} ca.cloudace
> {} ca.cloudace.section3
> {} ca.cloudace.section3.controller

> {} ca.cloudace.section3.model

> {} ca.cloudace.section3.repository

> {} ca.cloudace.section3.service

e Handles HTTP requests from clients.
e Routes requests to the service layer.
e Can return views (HTML) or data (JSON/XML).

e @RestController
e @RequestMapping("/api/students")

o /[@CrossOrigin(origins = "http://localhost:4200") // Allow CORS for frontend requests; for ANGULAR frontend
e //use port 5175 for REACT or port 5176 for VUE as frontend

e public class StudentController {
e //If you are using a service layer, you can inject it here to handle database
operations
e @Autowired
e private final StudentService studentService;
1

contains business logic of the application.
Processes data before sending it to the controller or repository.
Keeps controllers thin and focused on request handling.

@Service
public class StudentService {

@Autowired
private StudentRepository studentRepository;

public StudentService(StudentRepository studentRepository) {
this.studentRepository = studentRepository;

}

¢ Handles data access (database operations).
e Uses Spring Data JPA or other persistence frameworks.
e Abstracts database queries from the service layer.

e @Repository
e public interface StudentRepository extends
JpaRepository<Student, Long> {

e /[Implements all default CRUD operations (see later)
e // Additional query methods can be defined here if needed

° }

e Represents the domain objects
or database tables.
e Contains fields, getters/setters,

and relationships.

e Maps to database structure

via JPA/Hibe

"nate.

e @Entity
e @Table(name = "students")

public class Student {

@ld
@GeneratedValue(strategy = GenerationType.IDENTITY)

private Long id,;

@NotBlank(message = "Name is required")
private String name;

@Min(value = 18, message = "Age must be at least 18")
private int age;

public Student() {
// Default constructor

}

e Take a student action (like Login or viewing his profile):
e The StudentController will be called (like

http://localhost:8080/students/login

e This will call the StudentService class to determine what to do next

e |flogin, then we will handle database connection with the table
students and verity its credentials.

e This will call Repository (which hide the SQL layer for us !!)

e This will also include invoking the model class which is Student (always
singular)

e For courses : we will have
e CourseController - CourseService - CourseRepository - Course

http://localhost:8080/students/login
http://localhost:8080/students/login

