
FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Spring Boot Architecture

SPRING BOOT ECOSYSTEM

Allow developers to focus more on business logic rather than
boilerplate setup.

Key features of Spring Boot:
Auto-configuration: Automatically configures your Spring application
based on the JARs on your classpath.

Standalone: Embeds a web server like Tomcat directly, so you can just run
your application as a JAR.

No XML configuration: Largely relies on annotations and convention over
configuration.

SPRING BOOT ANNOTATIONS

@SpringBootApplication // This is the magic annotation!
Tells Spring to look for other components & configurations,
allowing it to find your controllers, services, etc.

 FrontEnd <=> (Controller -> Service -> Repository -> Database)

SpringApplication.run(.class, args)
This static method is responsible launching a Spring
application from a Java main method

ESSENTIAL DEPENDENCIES
<dependency>

 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>

 </dependency>

APPLICATION.PROPERTIES
Spring Boot uses application.properties to manage configuration.

In src/main/resources
application.properties

When you work in different environment, you can have different
versions of this file like :

application-dev.properties
for development

application-prod.properties
for production

STRUCTURE OF YOUR APP

controller
service
repository

package name :
ca.cloudace

arficactId :
section3

YOUR FIRST APP - PROJECT #1 : UNIVERSITYAPP
Create a folder named : git
Inside this you create another folder : universityapp
Inside university app, there will be two projects :

backend
frontend

So, overall :
git

universityapp
backend (spring boot app) ⟶ a git repo
frontend (one of angular, react, vue ⟶ see later sections)

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Writing REST Endpoints

WHAT ARE CONTROLLERS ?

Controllers handle incoming HTTP requests and send responses.

Spring Boot offers two main controller types:
@Controller – For traditional web apps (HTML pages).
@RestController – For REST APIs (JSON / XML).

Both are used to separate presentation logic from business logic.

MVC CONTROLLER

@Controller (Web or MVC Controller)
Used in traditional web applications that return HTML pages.
Works with Thymeleaf, JSP, or other template engines.
Returns view names, not raw data.

@Controller
public class StudentController {
@GetMapping("/students")
 public String listStudents(Model model){
 return "home"; // Resolved to home.html
}

}

http://localhost:8080/students

Rajeev Khoodeeram

REST CONTROLLER

Used in RESTful APIs that return JSON or XML responses.
Commonly used for frontend-backend communication or mobile app
APIs.
Combines @Controller + @ResponseBody, so it returns data directly.

@RestController
@RequestMapping("/api/students")

public class StudentController {
@GetMapping
 public ResponseEntity<List<Student>> getAllStudents() {
 List<Student> students = studentService.getAllStudents();
 return new ResponseEntity<>(students, HttpStatus.OK);
}
}

http://localhost:8080/api/students

Rajeev Khoodeeram

OTHER ANNOTATIONS

@PostMapping
Create a new record in database

@PutMapping
Update an existing record using its primary key

@DeleteMapping
Delete an existing record using its primary key

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Using postman

USING POSTMAN FOR API TESTING

Postman is a GUI tool to test and interact with APIs.
Allows sending HTTP requests: GET, POST, PUT, DELETE, etc.
Useful for testing REST APIs during development.
Can test local apps (localhost) or deployed APIs.

GET API CALLS

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Application properties

APPLICATION.PROPERTIES

Spring Boot uses application.properties to manage configuration.

We’ll learn to customize settings like server port, database
connections, and logging.

Understanding this file lets you tailor your app for different
environments easily. By environments, we mean : developer, testing,
etc

application.properties (or application.yml) is the heart of Spring
Boot's externalized configuration.

SERVER CONFIGURATION (PORT, CONTEXT PATH)

This is one of the most basic but crucial configurations.

Scenario: You want your application to run on a port other than
the default 8080, or you want to add a context path.

Server port (default is 8080)
server.port=9090

Context path for the application (e.g.,http://localhost:9090/my-app/hello)

server.servlet.context-path=/my-app

PROFILE-SPECIFIC PROPERTIES
Scenario: Different database settings or API endpoints for dev vs. prod.
Files:

src/main/resources/application.properties (default/common
properties)
src/main/resources/application-dev.properties
src/main/resources/application-prod.properties

application.properties (Default):

Default settings
app.environment=Default
server.port=8080
spring.datasource.url=jdbc:h2:mem:defaultdb

APPLICATION.PROPERTIES

application-dev.properties:

Development specific settings
app.environment=Development
server.port=8081 # Dev runs on a different port
spring.datasource.url=jdbc:h2:mem:devdb

APPLICATION.PROPERTIES

application-prod.properties:

Production specific settings
app.environment=Production
server.port=8080 # Prod might use default or a specific external
port
spring.datasource.url=jdbc:mysql://prod-db:3306/prod_db
spring.jpa.hibernate.ddl-auto=none

Don't auto-create schema in prod

WHICH ONE IS USED BY SPRING BOOT ?
Spring Boot checks for the property:

spring.profiles.active=dev
This can be set in several ways:
Option 1 – Inside application.properties

This will make Spring load application-dev.properties in addition to the
default one.

Option 2 – Using Command Line
When you run your app:

java -jar myapp.jar --spring.profiles.active=prod

Option 3 – In your IDE (e.g., IntelliJ or VS Code)
Add it to Run Configuration → VM Options:

-Dspring.profiles.active=prod

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Complete REST implementation

SERVICE LAYER PATTERN

Controller: Handles HTTP requests, delegates business logic to the
service layer, and returns HTTP responses.

Service: Contains the core business logic. It orchestrates operations,
potentially involving multiple repositories.

Repository: Handles direct database interaction.

Model = Entity = Database table

CONTROLLER

Handles HTTP requests from clients.
Routes requests to the service layer.
Can return views (HTML) or data (JSON/XML).

@RestController
@RequestMapping("/api/students")

//@CrossOrigin(origins = "http://localhost:4200") // Allow CORS for frontend requests; for ANGULAR frontend
// use port 5175 for REACT or port 5176 for VUE as frontend

public class StudentController {
 // If you are using a service layer, you can inject it here to handle database
operations
 @Autowired
 private final StudentService studentService;

}

SERVICE
Contains business logic of the application.
Processes data before sending it to the controller or repository.
Keeps controllers thin and focused on request handling.

@Service
public class StudentService {

 @Autowired
 private StudentRepository studentRepository;

 public StudentService(StudentRepository studentRepository) {
 this.studentRepository = studentRepository;
 }

REPOSITORY
Handles data access (database operations).
Uses Spring Data JPA or other persistence frameworks.
Abstracts database queries from the service layer.

@Repository
public interface StudentRepository extends
JpaRepository<Student, Long> {

// Implements all default CRUD operations (see later)
// Additional query methods can be defined here if needed

}

MODEL
@Entity
@Table(name = "students")
public class Student {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 @NotBlank(message = "Name is required")
 private String name;

 @Min(value = 18, message = "Age must be at least 18")
 private int age;

 public Student() {
 // Default constructor
 }

Represents the domain objects
or database tables.

Contains fields, getters/setters,
and relationships.

Maps to database structure
via JPA/Hibernate.

EXAMPLE
Take a student action (like Login or viewing his profile):
The StudentController will be called (like
http://localhost:8080/students/login

This will call the StudentService class to determine what to do next
If login, then we will handle database connection with the table
students and verify its credentials.
This will call Repository (which hide the SQL layer for us !!)
This will also include invoking the model class which is Student (always
singular)

For courses : we will have
CourseController ⟶ CourseService ⟶ CourseRepository ⟶ Course

http://localhost:8080/students/login
http://localhost:8080/students/login

