
FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

ORM - JPA vs Hibernate

WHAT IS ORM -(1) ?

Object-Relational Mapping maps objects (model or entity) to data
(table) in a relational database.

Essentially, it acts as a bridge between the object-oriented world of
Java and the relational world of SQL databases.

Reduces boilerplate code: You don't have to write repetitive SQL
queries for database operations.

WHAT IS ORM - (2)?

Object-oriented approach: You work with Java objects directly, rather
than raw SQL tables and rows.

Database independence: With ORM, you can often switch between
different relational databases with minimal code changes.

Improved maintainability: Changes to the database schema can often
be handled by updating entity mappings rather than with SQL.

JPA (CAKE BOOK)

JPA (Java Persistence API):

JPA is a specification (a set of interfaces and annotations) for
managing relational data in Java applications. It defines how an ORM
tool should behave.

It's part of the Jakarta EE platform (formerly Java EE).

JPA itself does not provide an implementation; it's just a standard.

HIBERNATE (MASTER CHEF)
Hibernate is a popular, open-source implementation of the JPA
specification.

It's one of the most widely used ORM frameworks in the Java
ecosystem.

When you use Spring Data JPA, you are typically using Hibernate
under the hood as the default JPA provider.

JPA defines the rules and Hibernate plays by those rules !!

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Setting up Spring Data JPA

JPA DEPEDENCIES

To integrate Spring Data JPA and MySQL into your Spring Boot
project, you need to add specific dependencies to your pom.xml file.
Open pom.xml: Locate your pom.xml file in your project's root
directory.
Add Dependencies: Add the following dependencies within the
<dependencies> section:

 <!-- Spring Data JPA for database interaction -->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>

DATABASE SPECIFIC CONFIG.
<!-- MySQL JDBC Driver for connecting to MySQL database -->

 <dependency>
 <groupId>com.mysql</groupId>
 <artifactId>mysql-connector-j</artifactId>
 <scope>runtime</scope>
 </dependency>

<!-- postgreSQL JDBC Driver -->
 <dependency>
 <groupId>org.postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <scope>runtime</scope>
 </dependency>

STARTER & DRIVER

spring-boot-starter-data-jpa
It brings in all the necessary dependencies for using Spring Data
JPA, including Hibernate.
It provides auto-configuration for JPA and a convenient way to work
with repositories.

mysql-connector-j
This is the official JDBC (Java Database Connectivity) driver for
MySQL.
It allows your Java application to connect to and communicate with
a MySQL database.
The <scope>runtime</scope> means it's only needed at runtime, not
during compilation.

CONFIGURATION IN APPLICATION.PROPERTIES

spring.datasource.url=jdbc:mysql://localhost:3306/your_database_name?
createDatabaseIfNotExist=true&useSSL=false&serverTimezone=UTC
spring.datasource.username=root
spring.datasource.password=your_mysql_root_password
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver

JPA/Hibernate settings
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQL8Dialect

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Create a JPA Entity Class Student for Entity
Mapping with mySQL

JPA ENTITY

In JPA, an entity is a lightweight persistent domain object.

It represents a table in your database, and each instance of the entity
represents a row in that table.

Entity mapping involves defining how your Java classes map to
database tables and their fields map to column

JAVA - MYSQL

ANNOTATIONS (1)

@Entity: Declares the class as an entity bean.
This is the primary annotation for marking a class as a JPA entity.

@Table(name = "students")
Specifies the primary table for the annotated entity.
If omitted, the table name defaults to the entity class name
(Student).
It's good practice to explicitly define table names, especially if they
differ from your class names or you want to use a specific naming
convention (e.g., plural names).

ANNOTATIONS (2)

@Id: Specifies the primary key of the entity.
Every entity must have a primary key.

@GeneratedValue(strategy = GenerationType.IDENTITY)
Configures the strategy for primary key generation.

GenerationType.IDENTITY
Relies on an auto-incremented column in the database (e.g.,
AUTO_INCREMENT in MySQL). This is often the most straightforward
strategy for MySQL.

@Column
Specifies the mapped column for a persistent property or field.
name: The name of the column in the database (defaults to field name if
omitted).
nullable: true (default) if the column can contain NULL values, false if not.

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Configure Spring Data JPA Repository Interface

THE SCENARIO

StudentController ⟶ controller package
Handles HTTP requests (CRUD)

StudentService ⟶ service package
Interface between controller and database (via repository)

Student Object or table ⟶ model package

StudentRepository ⟶ repository package

JPAREPOSITORY

Create a new package: repository (in main)

For this, we will create a new folder or package inside the project
called repository.

 >>sudo mkdir repository
 >>sudo chmod -R 777 repository

Create StudentRepository interface which extends JpaRepository

STUDENTREPOSITORY

import com.example.demo.model.Product;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.stereotype.Repository;

@Repository
public interface ProductRepository extends JpaRepository<Product, Long>
{
// JpaRepository provides methods like:
// save(), findById(), findAll(), deleteById(), count(), etc.
// No implementation needed! Spring Data JPA provides it at runtime.
}

So it is blank but you can implement you own method as well

ANNOTATIONS

@Repository
A stereotype annotation that indicates the class (or interface, in this
case) is a repository and ensures that it's picked up by component
scanning.
It also enables Spring's exception translation for persistence-related
exceptions.

extends JpaRepository<Student, Long>: This is the key.
Student: The entity type that this repository will manage.
Long: The data type of the entity's primary key (id in our Product
entity).

PREDEFINED METHODS
By simply extending JpaRepository, you automatically get methods
like:

save(entity): Saves a given entity.

findById(id): Retrieves an entity by its ID. Returns Optional<T>.

findAll(): Returns all instances of the type.

deleteById(id): Deletes the entity with the given ID.

count(): Returns the number of entities available.

existsById(id): Returns whether an entity with the given ID exists.

FULL EXAMPLE

PREDEFINED METHODS

MYSQL CONNECTION

