N

FULL STACKDEV

spring
boot

% ORM - JPA vs Hibernate

e —
Ny
S

Presented by:

Rajeev Khoodeeram,

{
f
!
£

e Object-Relational Mapping maps objects (model or entity) to data
(table) in a relational database.

e Essentially, it acts as a bridge between the object-oriented world of
Java and the relational world of SQL databases.

e Reduces boilerplate code: You don't have to write repetitive SQL
queries for database operations.

e Object-oriented approach: You work with Java objects directly, rather
than raw SQL tables and rows.

e Database independence: With ORM, you can often switch between
different relational databases with minimal code changes.

e Improved maintainability: Changes to the database schema can often
be handled by updating entity mappings rather than with SQL.

¢ JPA (Java Persistence API):

e JPA is a specification (a set of interfaces and annotations) for
managing relational data in Java applications. It defines how an ORM
tool should behave. GENtity

PId
Long 1id;

e |t's part of the Jakarta EE platform (formerly Java EE).

String name;

e JPA itself does not provide an implementation; it's just a standard.

e Hibernate is a popular, open-source implementation of the JPA
specification.

e |t's one of the most widely used ORM frameworks in the Java
ecosystem.

e \When you use Spring Data JPA, you are typically using Hibernate
under the hood as the default JPA provider.

JPA defines the rules and Hibernate plays by those rules !!

= sessionFactory.openSession();
session.beginTransaction();

session.save(student);

session.getTransaction().commit();

s —

O

FULL STACKDEV

spring
boot

X Setting up Spring Data JPA

¢ To integrate Spring Data JPA and MySQL into your Spring Boot
project, you need to add specific dependencies to your pom.xml file.
e Open pom.xml: Locate your pom.xml file in your project's root
directory.
e Add Dependencies: Add the following dependencies within the
<dependencies> section:
<I-- Spring Data JPA for database interaction -->
<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-data-jpa</artifactid>
</dependency>

O

o <I-- MySQL JDBC Driver for connecting to MySQL database -->
<dependency>
<groupld>com.mysql</groupld>
<artifactld>mysql-connector-j</artifactld>
<scope>runtime</scope>
</dependency>

o <!-- postgreSQL JDBC Driver -->
<dependency>
<groupld>org.postgresql</groupld>
<artifactld>postgresql</artitfactid>
<scope>runtime</scope>
</dependency>

e spring-boot-starter-data-jpa
o It brings in all the necessary dependencies for using Spring Data
JPA, including Hibernate.
o |t provides auto-configuration for JPA and a convenient way to work
with repositories.

e mysql-connector-j
o This is the official JDBC (Java Database Connectivity) driver for
MySQL.
o It allows your Java application to connect to and communicate with
a MySQL database.
o The <scope>runtime</scope> means it's only needed at runtime, not
during compilation.

spring.datasource.url=jdbc:mysql://localhost:3306/your_database_name?
createDatabaselfNotExist=true&useSSL=false&serverTimezone=UTC

Spri

spri
Spri

.
spri

Spri
Spri

O

ng.datasou
ng.datasou

ng.datasou

rce.username=root
rce.password=your_mysqgl_root_password

ce.driver-class-name=com.mysql.cj.jdbc.Driver

PA/Hibernate settings

ng.jpa.hibernate.ddl-auto=update

ng.jpa.show-sql=true
ng.jpa.properties.hibernate.dialect=org.hibernate.dialect. MySQL8Dialect

O

FULL STACKDEV

spring
boot

Create a JPA Entity Class Student for Entity
Mapping with mySQL

S =

e —
——
.

Presented by:

Rajeev Khoodeeram

e In JPA, an entity is a lightweight persistent domain object.

e [t represents a table in your database, and each instance of the entity
represents a row in that table.

e Entity mapping involves defining how your Java classes map to
database tables and their fields map to column

O

mtest 2
v [l Databases

> enroll_db

? Sys

v test

- [Tables
v student 16K

Bm Columns
B Constraints
Bl Foreign Keys
Pm References
B Triggers
IE Indexes
Bm Partitions
employee

B Views
> [Indexes
> M Procedures

)

student

Properties

Table Name:
Engine:

Auto Increment:
Charset:
Collation:

Description:

| Foreign Keys

| References

employee student X

s Data 4. Diagram
student
InnoDB
0
utf8mb4

utf8mb4_0900_ai_ci

Column Name
Bl Ccolumns

B3 Constraints

id
name
age

DBeaver 25.1.3 - student

test 2 ~

#lData Type
1int

2 varchar(100)
3 int

test vi(iyw [l o wi

Not Null
\%
[v]
[v]

Student.java M X

section3 > src > main > java > ca > cloudace > section3 > model > Student.java > Language Support for Java(

@Entity
@Table(name = "students")
oublic class Student m

@Id

@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

@otBlank(message = "Name is required")
private String name;

@in(value = 18, message = '"Age must be at least 18")
@ax(value = 100, message = "Age must be at most 30")
private int age;

e @ENtity: Declares the class as an entity bean.
o This is the primary annotation for marking a class as a JPA entity.

e @Table(name = "students")
o Specifies the primary table for the annotated entity.
o If omitted, the table name defaults to the entity class name
(Student).
o It's good practice to explicitly define table names, especially if they
differ from your class names or you want to use a specific naming
convention (e.g., plural names).

¢ @Id: Specifies the primary key of the entity.
o Every entity must have a primary key.
e @GeneratedValue(strategy = GenerationType.IDENTITY)
o Configures the strategy for primary key generation.
e GenerationType.IDENTITY
o Relies on an auto-incremented column in the database (e.g.,
AUTO_INCREMENT in MySQL). This is often the most straightforward
strategy for MySQL.
e @Column
o Specifies the mapped column for a persistent property or field.
o name: The name of the column in the database (defaults to field nameg'if
omitted).
o nullable: true (default) if the column can contain NULL values, false’if not.

O

FULL STACKDEV

spring
boot

Configure Spring Data JPA Repository Interface

S =

e —
——
.

e StudentController - controller package
o Handles HTTP requests (CRUD)

e StudentService - service package
o Interface between controller and database (via repository)

e Student Object or table - model package

e StudentRepository - repository package

e Create a new package: repository (in main)

e For this, we will create a new folder or package inside the project
called repository.
o >>sudo mkdir repository
o >>sudo chmod -R 777 repository

e Create StudentRepository interface which extends JpaRepository

e import com.example.demo.model.Product;
e import org.springframework.data.jpa.repository.JpaRepository;
e import org.springframework.stereotype.Repository;

@Repository

public interface ProductRepository extends JpaRepository<Product, Long>
{

// JpaRepository provides methods like:

// save(), findByld(), findAll(), deleteByld(), count(), etc.

// No implementation needed! Spring Data JPA provides it at runtime.

}

So itis blank but you can implement you own method as-well

¢ @Repository
o A stereotype annotation that indicates the class (or interface, in this
case) Is a repository and ensures that it's picked up by component
scanning.
o |t also enables Spring's exception translation for persistence-related
exceptions.

e extends JpaRepository<Student, Long>: This is the key.
o Student: The entity type that this repository will manage.
o Long: The data type of the entity's primary key (id in our Product
entity).

e By simply extending JpaRepository, you automatically get methods
like:
o save(entity): Saves a given entity.
o findByld(id): Retrieves an entity by its ID. Returns Optional<T>.
o findAll(): Returns all instances of the type.
o deleteByld(id): Deletes the entity with the given ID.

o count(): Returns the number of entities available.

o existsByld(id): Returns whether an entity with the given ID exists.

~ JAVA PROJECTS
v [section3
v [src/main/java
> {1} ca
> {} ca.cloudace

{} ca.cloudace.section3

{} ca.cloudace.section3.controller

StudentController
‘42 StudentRestController
{} ca.cloudace.section3.model
%2 Student
{} ca.cloudace.section3.repository
«O StudentRepository —+

{} ca.cloudace.section3.service IDL_.Ib.lj_'C ClaSSl StudentRestController {

42 StudentService

@Autowired
private final StudentService studentService;

public StudentRestController(StudentService studentService) {
this.studentService = studentService;

@Service
public class StudentService!ﬂ

@Autowired
private StudentRepository studentRepository;

public StudentService(StudentRepository studentRepository) {
this.studentRepository = studentRepository;

x @return

public List<Student> getAllStudents() {
return studentRepository.findAll();

@Repository

DBeaver 25.1.3 - student
test2 v | |test vi (v il wi
student employee student X

Properties |[f@ Data s Diagram

v Ugtest 2 Jlocalhost:330€ Table Name: student
v [l Databases

> enroll_db

> Sys Auto Increment: 0

Engine: InnoDB

test
v [Tables
v student 1[51,4 Collation: utf8mb4_0900_ai_ci
BE Columns
B Constraints
Bl Foreign Keys
Bl References
B Triggers
Bl Indexes |
B Partitions Column Name #|Data Type Not Null

> employee - : 1 int [V]

7 B3 Constraints
> [Views — 2 varchar(100) \%
> [Indexes "8 Foreign Keys 3int [v]

> [Procedures BB References

Charset: utf8mb4

Description:

BN Columns

spring.datasource.url=jdbc:mysql://localhost:3306/test
spring.datasource.username=rajeev
spring.datasource.password=Rk2025.;
spring.datasource.driver—class—name=com.mysql.cj.jdbc.Driver

spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sqgl=true
spring. jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQL8Dialect

