O

FULL STACKDEV

spring
boot

Spring 1oC Container & Dependency Injection

e |t's responsible for managing the lifecycle of your application's
objects (beans) and their dependencies.

e In OO, we used objects - that is objects are created and destroyed
when they are no longer used ...this is handled for us by the Spring
framework

e |n traditional programming, you're responsible for creating and
managing the lifecycle of your objects.
o Student s = new Student();

e With |oC, the framework (Spring, in this case) takes over the
responsibility of creating, configuring, and managing your objects.

e |[nstead of you calling the framework, the framework takes control
over your objects .

e This "inversion" of control leads to more modular and testable code.

e You will notice so far, we have never called new on any of the main
Spring classes.

¢ The Spring loC container reads your configuration metadata (that is
your annotations) and uses it to instantiate, configure, and assemble the
objects.

e @Service: Indicates that an annotated class is a "Service". It's typically
used for classes that encapsulate business logic.

e For example:

e @Service

e public class StudentService {

e // .. business logic for students

* }

@Repository: Indicates that an annotated class is a "Repository". It is
typically used for classes that directly interact with the database (e.g.,
Data Access Objects - DAOs).

It also enables automatic exception translation from persistence-
specific exceptions to Spring's DataAccessException hierarchy.

For example

@Repository

public class StudentRepository {
// ... database interaction

}

o @Controller: Indicates that an annotated class is a "Controller".

e Thisis used in Spring MVC applications to handle web requests and
return views (e.g., Thymeleaf templates).

e For example

e @Controller

e public class StudentController {

e //... handles web requests, returns view names

* }

@RestController: A convenience annotation that combines @Controller
and @ResponseBody.

It's primarily used for building RESTful web services, where the methods
return data directly (e.g., JSON or XML) rather than view names.

For example
@RestController
public class StudentController {
// ... handles API requests, returns data

}

e DI'=Injecting required dependencies into a class rather than creating
them inside it.

e Benefits:
o> Promotes loose coupling
o Easier unit testing
o Cleaner, maintainable code

e Without DI :
class StudentService {
private StudentRepo repo = new StudentRepo();

}

e With DI :

class StudentService {
private StudentRepo repo; - isinjected here !
public StudentService(StudentRepo repo) { this.repo = repo; }

}

o @Repository
¢ public class StudentRepo 1 ... }

e @Service

e public class StudentService {
e @Autowired

e private StudentRepo repo;

° }

e @RestController
e public class StudentController {
e @Autowired

e private StudentService service;
o !

N

FULL STACKDEV

spring
boot

Spring annotations for database operations

e We have b main annotations that we will use more often for
database operations for our Java services. These are:
e @RequestMapping - class level (base path)

e @GetMapping - Read
e @PostMapping - Create
e @PutMapping - Update

e @DeleteMapping - Delete

O

¢ @RequestMapping: A versatile annotation for mapping web requests
onto specific handler classes and/or handler methods.

e |t can be used at the class level to define a base path for all methods
In that controller, and at the method level for specific endpoints.

e @RestController

e @RequestMapping("/api/students") // Base path for all methods in
this controller

e public class StudentController {

e /..
° }

O

@ & localhost:8080/api/students X A

< C @® localhost:8080/api/students

Pretty-print () @RestController
@Req ‘'stMapping("/api/students")
[_ g |

{
Illd": 1' l L S AT e . " i
"name": "Rajeev", @C ,sOrigin(origins = "http://localhost:5176")

"age": 23 tic class StudentRestController {

Ilidll: 2'
"name'": "Dev Pilon",
age": 45

a will be returned -
format

b G H
Ilnamell: IIAbdu'Lell'
"age": 37

Bl as
"name": "Rhea",
age": 19

Hid4: 5,
Ilnamell: IIZDUII’
Ilagell: 18

}

e @GetMapping: Maps HTTP GET requests. Used for retrieving resources.

e @GetMapping // Maps to /api/students (if @RequestMapping is at class
level)

@GetMapping

public ResponseEntity<List<Student>> getAllStudents() {

List<Student> students = studentService.getAllStudents();

return new ResponseEntity<>(students, HttpStatus.OK);
}

¢ @PostMapping: Maps HTTP POST requests. Used for creating new
resources.

e @PostMapping // Maps to /api/students

e public Product createStudent(@RequestBody Student newStudent) {
e //...save new student

e return newSudent;

¢}

e @PutMapping: Maps HTTP PUT requests.

e Used for updating existing resources (often for full replacement of a
resource).

e @PutMapping("/{id}") // Maps to /api/students/{id}

e public Product updateStudent(@PathVariable Long id, @RequestBody
Student updatedStudent) {

e //...update student by ID

e return updatedStudent;

° }

e @DeleteMapping: Maps HTTP DELETE requests. Used for deleting
resources.

e @DeleteMapping("/{id}") // Maps to /api/students/{id}

e public ResponseEntity<Void> deleteStudent(@PathVariable Long id) {
e //...deletestudent by ID

e return ResponseEntity.noContent().build(); // Return 204 No Content

° }

N

FULL STACKDEV

spring
boot

% HTTP Status codes

e —
Ny
S

Presented by:

Rajeev Khoodeeram,

{
f
!
£

e Returning appropriate HTTP status codes is crucial for building well-
behaved RESTful APls.

e |t provides clear communication to the client about the outcome of
their request.

o 200 OK: The request was successful. (e.g., GET, PUT, POST
success)

o 201 Created: The request has been fulfilled and resulted in a new
resource being created. (e.g., POST success for resource
creation)

o 204 No Content: The server successfully processed thereguest
and is not returning any content. (e.g., DELETE suecess)

p—

e 400 Bad Request: The server cannot process the request due to client
error (e.g., malformed request syntax, invalid request message
framing, or deceptive request routing).

e 401 Unauthorized: Authentication is required and has failed or has
not yet been provided.

e 403 Forbidden: The server understood the request but refuses to
authorize it. (e.g., insufficient permissions)

¢ 404 Not Found: The requested resource could not be found.

e 405 Method Not Allowed: The request method is known by the server
but has been disabled and cannot be used.

e 500 Internal Server Error: A generic error message, given when an
unexpected condition was encountered and no more specific message is

suitable.

e // Example: GET a resource

@GetMapping("/{id}")
public ResponseEntity<String> getltem(@PathVariable Long id) {
if (id ==1L) {

OK

}

return new ResponseEntity<>("Item Found!", HttpStatus.OK); // 200

else {
return new Responsekntity<>("ltem Not Found?,

HttpStatus.NOT_FOUND); // 404 Not Found

}

}

// Example: POST to create a resource

@PostMapping
public ResponseEntity<String> createltem(@RequestBody String
itemDetails) {
// Logic to save item
System.out.println("Creating item: " + itemDetails);
return new ResponseEntity<>("Item Created Successfully",
HttpStatus.CREATED); // 201 Created

}

e //Example: DELETE a resource

e @DeleteMapping("/{id}")

e public ResponseEntity<Void> deleteltem(@PathVariable Long id) {

e //Logicto delete item

e System.out.println("Deleting item with ID: " + id);

e return new ResponseEntity<>(HttpStatus.NO_CONTENT); // 204 No
Content

° }

° }

