
FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Spring IoC Container & Dependency Injection

SPRING IOC CONTAINER (1)

It's responsible for managing the lifecycle of your application's
objects (beans) and their dependencies.

In OO, we used objects - that is objects are created and destroyed
when they are no longer used …this is handled for us by the Spring
framework

In traditional programming, you're responsible for creating and
managing the lifecycle of your objects.

Student s = new Student();

SPRING IOC CONTAINER (2)

With IoC, the framework (Spring, in this case) takes over the
responsibility of creating, configuring, and managing your objects.

Instead of you calling the framework, the framework takes control
over your objects .

This "inversion" of control leads to more modular and testable code.

You will notice so far, we have never called new on any of the main
Spring classes.

HOW DOES IT WORKS ?

The Spring IoC container reads your configuration metadata (that is
your annotations) and uses it to instantiate, configure, and assemble the
objects.

@Service: Indicates that an annotated class is a "Service". It's typically
used for classes that encapsulate business logic.

For example :
 @Service
 public class StudentService {
 // ... business logic for students
 }

ANNOTATIONS - @REPOSITORY

@Repository: Indicates that an annotated class is a "Repository". It is
typically used for classes that directly interact with the database (e.g.,
Data Access Objects - DAOs).

It also enables automatic exception translation from persistence-
specific exceptions to Spring's DataAccessException hierarchy.

For example
 @Repository
 public class StudentRepository {
 // ... database interaction
 }

CONTROLLER ANNOTATIONS
@Controller: Indicates that an annotated class is a "Controller".

This is used in Spring MVC applications to handle web requests and
return views (e.g., Thymeleaf templates).

For example
 @Controller
 public class StudentController {
 // ... handles web requests, returns view names
 }

CONTROLLER ANNOTATIONS
@RestController: A convenience annotation that combines @Controller
and @ResponseBody.

It's primarily used for building RESTful web services, where the methods
return data directly (e.g., JSON or XML) rather than view names.

For example
 @RestController
 public class StudentController {
 // ... handles API requests, returns data
 }

DEPENDENCY INJECTION
DI = Injecting required dependencies into a class rather than creating
them inside it.

Benefits:
Promotes loose coupling
Easier unit testing
Cleaner, maintainable code

DEPENDENCY INJECTION
Without DI :

class StudentService {
 private StudentRepo repo = new StudentRepo();
}

With DI :

class StudentService {
 private StudentRepo repo; ⟶ is injected here !
 public StudentService(StudentRepo repo) { this.repo = repo; }
}

DEPENDENCY INJECTION
@Repository
public class StudentRepo { ... }

@Service
public class StudentService {
 @Autowired
 private StudentRepo repo;
}

@RestController
public class StudentController {
 @Autowired
 private StudentService service;
}

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Spring annotations for database operations

SPRING BOOT - HTTP REQUESTS

We have 5 main annotations that we will use more often for
database operations for our Java services. These are :
@RequestMapping ⟶ class level (base path)

@GetMapping ⟶ Read

@PostMapping ⟶ Create

@PutMapping ⟶ Update

@DeleteMapping ⟶ Delete

REQUESTMAPPING

@RequestMapping: A versatile annotation for mapping web requests
onto specific handler classes and/or handler methods.

It can be used at the class level to define a base path for all methods
in that controller, and at the method level for specific endpoints.

@RestController
@RequestMapping("/api/students") // Base path for all methods in
this controller
public class StudentController {
 // ...
}

REQUESTMAPPING

HTTP SPECIFIC : GETMAPPING

@GetMapping: Maps HTTP GET requests. Used for retrieving resources.
@GetMapping // Maps to /api/students (if @RequestMapping is at class
level)

 @GetMapping
 public ResponseEntity<List<Student>> getAllStudents() {
 List<Student> students = studentService.getAllStudents();

 return new ResponseEntity<>(students, HttpStatus.OK);
}

HTTP SPECIFIC : POSTMAPPING

@PostMapping: Maps HTTP POST requests. Used for creating new
resources.

@PostMapping // Maps to /api/students
public Product createStudent(@RequestBody Student newStudent) {
 // ... save new student
 return newSudent;
}

HTTP SPECIFIC : PUTMAPPING
@PutMapping: Maps HTTP PUT requests.

Used for updating existing resources (often for full replacement of a
resource).

@PutMapping("/{id}") // Maps to /api/students/{id}
public Product updateStudent(@PathVariable Long id, @RequestBody
Student updatedStudent) {
 // ... update student by ID
 return updatedStudent;
}

HTTP SPECIFIC : DELETEMAPPING
@DeleteMapping: Maps HTTP DELETE requests. Used for deleting
resources.

@DeleteMapping("/{id}") // Maps to /api/students/{id}
public ResponseEntity<Void> deleteStudent(@PathVariable Long id) {
 // ... delete student by ID
 return ResponseEntity.noContent().build(); // Return 204 No Content
}

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

HTTP Status codes

HTTP STATUS CODES

Returning appropriate HTTP status codes is crucial for building well-
behaved RESTful APIs.

It provides clear communication to the client about the outcome of
their request.

200 OK: The request was successful. (e.g., GET, PUT, POST
success)
201 Created: The request has been fulfilled and resulted in a new
resource being created. (e.g., POST success for resource
creation)
204 No Content: The server successfully processed the request
and is not returning any content. (e.g., DELETE success)

HTTP STATUS CODES

400 Bad Request: The server cannot process the request due to client
error (e.g., malformed request syntax, invalid request message
framing, or deceptive request routing).

401 Unauthorized: Authentication is required and has failed or has
not yet been provided.

403 Forbidden: The server understood the request but refuses to
authorize it. (e.g., insufficient permissions)

HTTP STATUS CODES

404 Not Found: The requested resource could not be found.

405 Method Not Allowed: The request method is known by the server
but has been disabled and cannot be used.

500 Internal Server Error: A generic error message, given when an
unexpected condition was encountered and no more specific message is
suitable.

EXAMPLE 1

// Example: GET a resource
 @GetMapping("/{id}")
 public ResponseEntity<String> getItem(@PathVariable Long id) {
 if (id == 1L) {
 return new ResponseEntity<>("Item Found!", HttpStatus.OK); // 200
OK
 } else {
 return new ResponseEntity<>("Item Not Found",
HttpStatus.NOT_FOUND); // 404 Not Found
 }
 }

EXAMPLE 2
 // Example: POST to create a resource

 @PostMapping
 public ResponseEntity<String> createItem(@RequestBody String
itemDetails) {
 // Logic to save item
 System.out.println("Creating item: " + itemDetails);
 return new ResponseEntity<>("Item Created Successfully",
HttpStatus.CREATED); // 201 Created
 }

EXAMPLE 3
 // Example: DELETE a resource

 @DeleteMapping("/{id}")
 public ResponseEntity<Void> deleteItem(@PathVariable Long id) {
 // Logic to delete item
 System.out.println("Deleting item with ID: " + id);
 return new ResponseEntity<>(HttpStatus.NO_CONTENT); // 204 No
Content
 }
}

