e

N

FULL STACKDEV

spring
boot

Why use Angular for frontend dev. ?

e Component-Based Architecture
o Applications are built as a tree of self-contained, reusable
components.

e TypeScript
o Angular is built with TypeScript, that adds static typing, improving
code quality and maintainability.

e Data Binding
o Seamless synchronization of data between the model and the yview.

Dependency Injection
o A robust system for providing dependencies to components and
services - just like in Java !

Routing
o A powerful module for navigating between different views/pages
without full page reloads.
CLI
o A robust tool for scaffolding projects, generating code, running tests,
and deploying applications.
RESTful APIs
o Angular is designed to easily consume RESTful APIs, which ishow
your Java backend will expose data

¢ Prerequisites for Angular Development

e Before we start, ensure you have these installed:
o> Node.|s
o npm (Node Package Manager)

e You can check on your terminal :
o >>node -v
o >>Nnpm -V

¢ Node.JsIs a runtime environment that lets you run JavaScript outside
the browser.

e Normally, JavaScript runs only in browsers (like Chrome or Firefox). But
Node.|s, built on Google’s V8 JavaScript engine, allows JavaScript to run
as a general-purpose programming language.

e |t comes with tools and libraries that let you:
o Build web servers & APIs
o Use package management (via npm, Node Package Manager)
o Run build tools (like webpack, Babel, TypeScript compilers)

e This is your primary tool for Angular development.
e After Node.js and npm are installed, install the Angular CLI globally
using npm:
o >>npm install -g @angular/cli
o or
o >>npm install -g @angular/cli@1/. (To specifty the version number;
here 17)
e >>nNg version
e This will display your Angular CLI version and other relevant details.
o Angular CLI: 17.3.17
o Node: 24.4.1 (Unsupported)
o Package Manager: npm 11.5.2
o OS: darwin armo4

N

FULL STACKDEV

spring
boot

Creating your Angular frontend project

e Navigate to the directory where you want to create your Angular
project.

e This is usually outside your Java backend project folder, as they are
separate applications that communicate via HTTP.

@ EXPLORER

v UNIVERSITYAPP

> .vscode
> backend

> frontend

>>ng new frontend —no-standalone

EXPLORER
Or (best) ~ FRONTEND

> .angular

> Vvscode

ng new frontend \

> node_modules

--standalone \ > public
. v src
routing \ * s
“Style:SCSS \ > components /student-list
__Strict \ > models

> services

__paCkage_manage rzpn pm app.config.server.ts

¢ Zoneless Angular
o Depend on Zone.js, a library that monkey-patches async APIs (like
setTimeout, DOM events, promises) to detect changes and
automatically trigger change detection.
o /Zone.Js adds runtime overhead.
o |t patches many browser APIs, which can cause performance
bottlenecks and debugging headaches.

e /Zoneless Angular
o Instead Angular uses modern browser APIs like Signals or RxJS to
know when to update the Ul.

e With SSR:
o User requests /home.
o Angular runs on the server (Node.|s) and generates HTML for /home.
o Browser gets ready-to-render HTML instantly.
o Angular JavaScript loads and "hydrates" (adds interactivity).

INAngular | exoetenas 2

Learn with Tutorials &

Hello, session3-angular

Congratulations! Your app is running. &

Angular Language Service 4

Angular DevTools &

Once the folder is created, open it in VS Code.
>> npm install (in VS Code inside the folder)

Let us check if our angular front end is working by opening a terminal
Inside VS code::
o >>ngserve

Normally, it will be using : http://localhost:4200.

Add this line In RestController to allow access to backend
o @CrossOrigin(origins = "http://localhost:4200")

http://localhost/

node_modules/: Contains all the third-party libraries
src/: Your main application source code.

app/. Contains your application's components, modules, services, etc.
app.ts: The root component of your application.

app.html: The HTML template for the root component (to be replaced -
should only contain <router-outlet />)
app.scss: css for the App component

app.config.ts :for application configuration (ex api URL — see below), it'is
called in app.config.server.ts

app.spec.ts : used for testing (in jasmine for ex ; just like we have JUnit)

app.module.ts: The root module that defines how your application's
parts fit together.

app-route.ts: Defines your application's routes
iIndex.ntml: The single entry point of your Angular SPA.
main.ts: The entry point for your TypeScript application

styles.scss: Global styles for your application.

o Used to initialise constants:

e For example
e export const appConfigServer = {
e apiUrl: 'http://localhost:8080/api/students’

o}’

e export class StudentService {
e // harcoding
o // private apiUrl = "http://localhost:8080/api/students’;

e private apiUrl = appConfigServer.apiUrl;

Defines your application's routes (that is how you navigate through your
website / page)

export const routes: Routes = |
{ path: 'students', component: StudentList },
{ path: ", component: App }, // default route

J;

N

FULL STACKDEV

spring
boot

Angular concepts for creating the frontend
pipeline

S

e —
_—
.

Presented by:

Now that your Angular app is running, let's look at how it will
Interact with your Java backend.
In Java we have this process:

Controller —> Service —> Repository —> Database
Model

In Angular, we have a similar kind of process:

Component —> Service —> BACKEND
Model

Components are the building blocks of your Ul. Each component has
an HTML template, a TypeScript class for logic, and optional CSS
styles.

Generating a component:
o >>ng generate component components/student-list-component
or the shorthand:
o >>ng g c components/student-list-component

This will create the components folder and the files for student-list>
component (the class is called StudentListComponent)

e Services are designed to provide reusable functionality, often for data
retrieval or business logic (just like in Java !!)
e You'll create services to make HTTP requests to your Java backend's
REST APIs.
e Generating a service:
o >>ng generate service services/student-service
e # orthe shorthand:
o >>ng g s services/student-service

e This will create the services folder and the files for student.service (two
files created : one StudentService class - the main file stored in student-
service.ts; and a test file called student-service.spec.ts).

Angular CLI does not have a built-in generator for models, because
models are just TypeScript interfaces/classes.

But you can create them manually inside a models folder:
>>ng g class models/student --type=model

src/app/models/student.model.ts. will be created (modify according to
our Java entity)

export Student { studentStatus: string;
studentld: number;

studentFirstName: string;
studentLastName: string; studentld: number,

//enter other attributes here firstName: Sﬁjmg:
lastName: string,

// add other attributes here
enrollmentDate: Date,

studentEnrollmentDate: Date;

.studentld = studentld,;

.StudentFirstName = firstName;
.StudentLastName = lastName;

// add other attributes here
.StudentEnrollmentDate = enrollmentDate;
.studentStatus = status;

¢ To make HTTP requests, you need to import HttpClient into your
student-service.ts.

° import { HttpClient } from '@angular/common/http’;
o import { Observable } from 'rxjs’;

e |[n Angular, the service part interacts with the Spring back end

e WWe are going to write the business logic to connect to backend and
retrieve the list of students

e Example src/app/services/student.service.ts:

export class StudentService {
private students: Student|] = [];
private apiUrl = appConfigServer.apiUrl,

constructor(private http: HttpClient) { }

/**

* Fetches the list of students from the API.

* @returns An observable containing the list of students.
*/

getStudents(): Observable<Student][]> {

return this.http.get<Student[]>(this.apiuUrl);

}

e Itisacoreconceptinreactive programming which focuses on data
streams and the propagation of change.

e |n the context of Angular, it's primarily implemented using the RxJS
(Reactive Extensions for JavaScript) library

e |t plays a fundamental role in handling asynchronous operations,
managing events, and dealing with data streams over time.

e |[t's a"push"” system, meaning the Observable pushes data to its
subscribers when data becomes available, rather than the subscriber
constantly checking (polling) for data

e export class StudentListComponent implements Onlnit {
e ngONIlnit() {
o this.fetchStudents();
° }
®
e fetchStudents() {
e this.studentService.getStudents().subscribe({
e next: (data) =>{
e this.students = data;
e console.log('Students fetched successfully:', data);
¢ 1}
e error: (error) =>1
e console.error('Error fetching students:', error);
¢ }
};
* }

*nglf="students && students.length > 0"

Student ID
First Name

[Last Name

// add other fields here
Status

*ngFor="let student of students"
{{ student.studentld }}
{{ student.studentFirstName } }
{{ student.studentLastName } }
// add other fields here

{{ student.studentStatus } }

e @DeleteMapping: Maps HTTP DELETE requests. Used for deleting
resources.

e @DeleteMapping("/{id}") // Maps to /api/students/{id}

e public ResponseEntity<Void> deleteStudent(@PathVariable Long id) {
e //...deletestudent by ID

e return ResponseEntity.noContent().build(); // Return 204 No Content

° }

e

O

FULL STACKDEV

spring
boot

UniversityApp - Add a new student

Create the student-form component (generate folders and files)
Design the Add form for student - StudentFormComponent.html
Update the StudentService - insert the addStudent method
Implement the StudentFormComponent.ts (TypeScript)
Configure Angular Routing for the Form (app.routes.ts)

Test

Commit to Github

~ app
v components

ng g c components/student-form-component | r————"—"—"

<> student-form-component.htmi

div
form [formGroup]="studentForm" (ngSubmit)="onSubmit()" student-form-component.scss
div

TS student-form-component.spec.ts

label for="firstName">First Name:</label
input id="firstName" formControlName="studentFirstName"

student-form-component.ts

el for="gender">Gender:</label

id="gender" formControlName="studentGender"
option value="male">Male</option

lon value="female">Female</option:

on value="other">Other</optio

input id="dateOfBirth" type="date" formControlName="studentDateOfBirth"
div
button type="submit">Submit</button

form

'

div *nglf="successMessage" class="success-message">{{ successMessage } }</div
div *nglf="errorMessage" class="error-message'>{{ errorMessage }}

div

¢ [formGroup]="studentForm" —> name of form used in ts file
e (ngSubmit)="onSubmit()" —> form will submitted using Angular

e \We'll use Reactive Forms, which are generally recommended for their
scalability, testability, and more explicit structure.

e |[n Angular, Reactive Forms are a way of building and managing forms in
your app programmatically in TypeScript.

Student-form-component.html
p>student-form—-component works!</p
aiv

form [formGroup]="studentForm"
(ngSubmit)="onSubmit()"

div

label for="firstName">First b

input 1id="firstName"
formControlName="studentFirstName"

label for="lastName'">Last Nan —

input 1id="lastName"
formControlName="studentLastName"
/div>

label for="gender'">Gender:

select 1id="gender"
formControlName="studentGender"

option value="male">Male

Student.java X

src » main > java »> ca » cloudace > backend > model > Student.java > Lang
@Entity
k @param studentStatus

public Student](|
int studentld,

String
String
String
String
String
String
String
String
String

studentFirstName,
studentEmail,
studentLastName,
studentPhoneNumber,
studentAddress,
studentGender,
studentDateOfBirth,
studentEnrollmentDate,
studentStatus

Remember : View (.html) calls Component (component.ts) which in turn
calls Service (service.ts) which will call the Spring backend (controller).

[*%

* Adds a new student.

* @param student The student to add.

* @returns An observable containing the added student.

*/

addStudent(student: Student): Observable<Student> {
return this.http.post<Student>("${this.apiUrl}/add’, student);

}

e @Component({

e selector: 'app-student-form-component),

e standalone: true,

e |mports: [ReactiveFormsModule,CommonModule],
e templateUrl:'/student-form-component.html

e styleUrls: ['\/student-form-component.scss']

° })

e See how we do the imports
e ReactiveFormsModule: since we are using Angular reactive form
e CommonModule : for http connection

export StudentFormComponent {
studentForm!: FormGroup;

nmn,

successMessage: string ="";

nm,

errorMessage: string ="";

fb: FormBuilder, studentService: StudentService

) 1}

.studentForm = this.fb.group({
studentFirstName: [", Validators.required],
studentLastName: [", Validators.required],
studentEmail: [", [Validators.required, Validators.email]],
studentPhoneNumber: [", Validators.required],

studentAddress: [", Validators.required],

studentGender: [", Validators.required],
studentDateO{Birth: [", Validators.required],
studentEnrollmentDate: [Date(), Validators.required],
studentStatus: ['inactive', Validators.required]

onSubmit() : void {

if (this.studentForm.invalid) {

.errorMessage = 'Failed to add student. Please fill all fields.';

.studentForm.markAllAsTouched();

.studentService.addStudent(this.studentForm.value).subscribe({
next: () {
.successMessage = 'Student added successfully!';

.errorMessage = "";
.studentForm.reset();

b

error: (error) {
.errorMessage = 'Failed to add student.’;

nm.,

.successMessage =y

e {path: "students/add", component: StudentFormComponent}
e Testing : http://localhost:4200/students./add

e | ocalhost:4200/students/add
o sends us to StudentFormComponent which is in student-
form.component.ts (initialises everything_)

o displays the view which is student-form.component.html (using the
corresponding css)

O

FULL STACKDEV

spring
boot

Completing Student CRUD with Delete and Edit
functionalities

S =

e —
——
.

Presented by:

Rajeev Khoodeeram

e Modify the list component (view / html) to add columns for edit and delete
e Update the StudentService - insert the deleteStudent method

e Modify the list component (ts) for delete functionality

e Testing

e Modify the StudentService - insert the updateStudent method and
getStudentByld
e Modify the form component (ts) to detect edit link has been clicked on the
list and execute the updateStudent method
o Modify the NgInit
o Modifty the OnSubmit
e Configure Angular Routing for the Form (app.routes.ts)
o [est
e Commit to Github

¢ Modify the list component (view / html) to add a column - add edit
link and delete button

e |n the header:
o <th>Actions</th>

e |n the body :
o <td>
o <a [routerLink]="['/students/edit’, student.studentld]">Edit
o <putton
(click)="deleteStudent(student.studentld)">Delete</button>
o </td>

Update the StudentService - insert the deleteStudent method
[**

* Deletes a student by ID.

* @param studentld The ID of the student to delete.

* @returns An observable indicating the result of the delete
operation.

*/

deleteStudent(studentlid: number): Observable<void> {
return this.http.delete<void>("${this.apiUrl}/${studentld}’);

}

deleteStudent(studentld: number) {
const confirmed = confirm('Are you sure you want to delete this student?');
If (confirmed) {
console.log('Deleting student with ID:', studentld),
this.studentService.deleteStudent(studentld).subscribe({
next: () => 1
console.log('Student deleted successfully');
this.students = this.students.filter(s => s.studentld !== studentld);
3
error: (error) =>{
console.error('Error deleting student:', error);

}
1);

o [**
e *Updates astudent by ID.
e *@param studentld The ID of the student to update.

e *@param student The updated student data.
e *@returns An observable containing the updated student.

o */

e updateStudent(studentld: number, student: Student):
Observable<Student> {
e return this.http.put<Student>("${this.apiUrl}/${studentld}’, student);

* }

¢ Modify the form component (ts) to detect edit link has been clicked
on the list and execute the updateStudent method

e |n the class add:
o iseditMode: boolean = false; // to know if we are in edit or add
mode
o studentld!: number; // to get id for the student we want to edit

.studentld = Number(this.route.snapshot.paramMap.get('studentld"));

if (this.studentld) {
1sEditMode = ;
studentService.getStudentByld(this.studentld).subscribe({
next: (student) => {

.studentForm.patchValue(student);
Js

error: (error) => {
.errorMessage = 'Failed to load student data.’;

});

j

this.studentService.addStudent(this.studentForm.value).subscribe({
next: () => {
this.successMessage = 'Student added successfully!’;

mnn,
_______ ’

this.studentForm.reset(); //

}s

error: (error) => {
this.errorMessage = 'Failed to add student.’;
this.successMessage = "";

}

});
}

else {

this.studentService.updateStudent(this.studentld, this.studentForm.value).subscribe({
next: () => {
this.successMessage = 'Student updated successtully!';
this.errorMessage = "";
this.studentFo
b
error: (error) => {
this.errorMessage = 'Failed to update student.';

— 1,

this.successMessage = "";

}

I

;

e app.routes.ts
o {path: "students/edit/:studentld", component: StudentFormComponent}

e Committing to GitHub
o >>gjt branch
o >>gjt checkout -b frontend/feature-student-edit-delete
o >>gitadd.
o >>git commit -m "Committing edit and delete functionalities for student
only”
o >>git push

e On GitHub

e Create a Pull Request with a comment

e Then if no conflict, Team Leader will approve and merge with the main (check
main branch to see updates)

