
FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Why use Angular for frontend dev. ?

KEY CHARACTERISTICS (1)

Component-Based Architecture
Applications are built as a tree of self-contained, reusable
components.

TypeScript
Angular is built with TypeScript, that adds static typing, improving
code quality and maintainability.

Data Binding
Seamless synchronization of data between the model and the view.

KEY CHARACTERISTICS (2)
Dependency Injection

A robust system for providing dependencies to components and
services - just like in Java !

Routing
A powerful module for navigating between different views/pages
without full page reloads.

CLI
A robust tool for scaffolding projects, generating code, running tests,
and deploying applications.

RESTful APIs
Angular is designed to easily consume RESTful APIs, which is how
your Java backend will expose data

INSTALLING NODE AND ANGULAR 17

Prerequisites for Angular Development

Before we start, ensure you have these installed:
Node.js
npm (Node Package Manager)

You can check on your terminal :
>>node -v
>>npm -v

WHAT IS NODE.JS?

Node.js is a runtime environment that lets you run JavaScript outside
the browser.

Normally, JavaScript runs only in browsers (like Chrome or Firefox). But
Node.js, built on Google’s V8 JavaScript engine, allows JavaScript to run
as a general-purpose programming language.

It comes with tools and libraries that let you:
Build web servers & APIs
Use package management (via npm, Node Package Manager)
Run build tools (like webpack, Babel, TypeScript compilers)

ANGULAR CLI

This is your primary tool for Angular development.
After Node.js and npm are installed, install the Angular CLI globally
using npm:

 >>npm install -g @angular/cli
 or
 >>npm install -g @angular/cli@17. (To specify the version number;
here 17)

 >>ng version
 This will display your Angular CLI version and other relevant details.

Angular CLI: 17.3.17
Node: 24.4.1 (Unsupported)
Package Manager: npm 11.5.2
OS: darwin arm64

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Creating your Angular frontend project

WHERE TO CREATE THE ANGULAR FRONTEND ?

Navigate to the directory where you want to create your Angular
project.
This is usually outside your Java backend project folder, as they are
separate applications that communicate via HTTP.

COMMAND LINE

 >> ng new frontend —no-standalone

Or (best)

ng new frontend \
 --standalone \
 --routing \
 --style=scss \
 --strict \
 --package-manager=pnpm

TYPES OF ANGULAR APP

Zoneless Angular
Depend on Zone.js, a library that monkey-patches async APIs (like
setTimeout, DOM events, promises) to detect changes and
automatically trigger change detection.
Zone.js adds runtime overhead.
It patches many browser APIs, which can cause performance
bottlenecks and debugging headaches.

Zoneless Angular
Instead Angular uses modern browser APIs like Signals or RxJS to
know when to update the UI.

HTTP SPECIFIC : GETMAPPING

With SSR:
User requests /home.
Angular runs on the server (Node.js) and generates HTML for /home.
Browser gets ready-to-render HTML instantly.
Angular JavaScript loads and "hydrates" (adds interactivity).

RUNNING YOUR ANGULAR APP

Once the folder is created, open it in VS Code.
 >> npm install (in VS Code inside the folder)

Let us check if our angular front end is working by opening a terminal
inside VS code :

 >> ng serve

Normally, it will be using : http://localhost:4200.

Add this line in RestController to allow access to backend
@CrossOrigin(origins = "http://localhost:4200")

http://localhost/

FRONTEND STRUCTURE (1)
node_modules/: Contains all the third-party libraries
src/: Your main application source code.

app/: Contains your application's components, modules, services, etc.
app.ts: The root component of your application.

app.html: The HTML template for the root component (to be replaced -
should only contain <router-outlet />)
app.scss : css for the App component

app.config.ts :for application configuration (ex api URL — see below), it is
called in app.config.server.ts

FRONTEND STRUCTURE (2)
app.spec.ts : used for testing (in jasmine for ex ; just like we have JUnit)

app.module.ts: The root module that defines how your application's
parts fit together.

app-route.ts: Defines your application's routes

index.html: The single entry point of your Angular SPA.

main.ts: The entry point for your TypeScript application

styles.scss: Global styles for your application.

APP.CONFIG.TS
Used to initialise constants :

For example
export const appConfigServer = {
 apiUrl: 'http://localhost:8080/api/students'
};

export class StudentService {
// harcoding
// private apiUrl = 'http://localhost:8080/api/students';

 private apiUrl = appConfigServer.apiUrl;

APP.ROUTE.TS

Defines your application's routes (that is how you navigate through your
website / page)

export const routes: Routes = [
 { path: 'students', component: StudentList },
 { path: '', component: App }, // default route
];

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Angular concepts for creating the frontend
pipeline

JAVA VS ANGULAR

Now that your Angular app is running, let's look at how it will
interact with your Java backend.
In Java we have this process :

Controller —> Service —> Repository —> Database
 Model

In Angular, we have a similar kind of process :

Component —> Service —> BACKEND
 Model

COMPONENTS

Components are the building blocks of your UI. Each component has
an HTML template, a TypeScript class for logic, and optional CSS
styles.

Generating a component:
 >>ng generate component components/student-list-component

 # or the shorthand:
 >>ng g c components/student-list-component

This will create the components folder and the files for student-list-
component (the class is called StudentListComponent)

SERVICES

Services are designed to provide reusable functionality, often for data
retrieval or business logic (just like in Java !!)
You'll create services to make HTTP requests to your Java backend's
REST APIs.
Generating a service:

 >>ng generate service services/student-service
 # or the shorthand:

 >>ng g s services/student-service

This will create the services folder and the files for student.service (two
files created : one StudentService class - the main file stored in student-
service.ts; and a test file called student-service.spec.ts).

MODELS

Angular CLI does not have a built-in generator for models, because
models are just TypeScript interfaces/classes.

 But you can create them manually inside a models folder:

 >>ng g class models/student --type=model

src/app/models/student.model.ts. will be created (modify according to
our Java entity)

STUDENT.MODEL.TS

HTTPCLIENT MODULE / MAKING HTTP REQUESTS

To make HTTP requests, you need to import HttpClient into your
student-service.ts.

import { HttpClient } from '@angular/common/http';
import { Observable } from 'rxjs';

In Angular, the service part interacts with the Spring back end

We are going to write the business logic to connect to backend and
retrieve the list of students

Example src/app/services/student.service.ts:

CREATING THE SERVICE
export class StudentService {
 private students: Student[] = [];
 private apiUrl = appConfigServer.apiUrl;

 constructor(private http: HttpClient) { }

 /**
 * Fetches the list of students from the API.
 * @returns An observable containing the list of students.
 */
 getStudents(): Observable<Student[]> {
 return this.http.get<Student[]>(this.apiUrl);
 }

RXJS - OBSERVABLE PATTERN

It is a core concept in reactive programming which focuses on data
streams and the propagation of change.

In the context of Angular, it's primarily implemented using the RxJS
(Reactive Extensions for JavaScript) library

It plays a fundamental role in handling asynchronous operations,
managing events, and dealing with data streams over time.

It's a "push" system, meaning the Observable pushes data to its
subscribers when data becomes available, rather than the subscriber
constantly checking (polling) for data

INTEGRATING THE STUDENTSERVICE
export class StudentListComponent implements OnInit {
 ngOnInit() {
 this.fetchStudents();
 }

 fetchStudents() {
 this.studentService.getStudents().subscribe({
 next: (data) => {
 this.students = data;
 console.log('Students fetched successfully:', data);
 },
 error: (error) => {
 console.error('Error fetching students:', error);
 }
 });
 }

DESIGNING OUR VIEW

HTTP SPECIFIC : DELETEMAPPING
@DeleteMapping: Maps HTTP DELETE requests. Used for deleting
resources.

@DeleteMapping("/{id}") // Maps to /api/students/{id}
public ResponseEntity<Void> deleteStudent(@PathVariable Long id) {
 // ... delete student by ID
 return ResponseEntity.noContent().build(); // Return 204 No Content
}

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

UniversityApp - Add a new student

ADD FUNCTIONALITY - STEPS

Create the student-form component (generate folders and files)

Design the Add form for student - StudentFormComponent.html

Update the StudentService - insert the addStudent method

Implement the StudentFormComponent.ts (TypeScript)

Configure Angular Routing for the Form (app.routes.ts)

Test

Commit to Github

CREATE THE STUDENT-FORM COMPONENT

ng g c components/student-form-component

REQUESTMAPPING

[formGroup]="studentForm" —> name of form used in ts file
(ngSubmit)=“onSubmit()" —> form will submitted using Angular

We'll use Reactive Forms, which are generally recommended for their
scalability, testability, and more explicit structure.

In Angular, Reactive Forms are a way of building and managing forms in
your app programmatically in TypeScript.

MAPPING ANGULAR - JAVA COMPONENTS

STUDENT-SERVICE.TS

Remember : View (.html) calls Component (component.ts) which in turn
calls Service (service.ts) which will call the Spring backend (controller).

 /**
 * Adds a new student.
 * @param student The student to add.
 * @returns An observable containing the added student.
 */
 addStudent(student: Student): Observable<Student> {
 return this.http.post<Student>(`${this.apiUrl}/add`, student);
 }

STUDENT-FORM-COMPONENT.TS
@Component({
 selector: 'app-student-form-component',
 standalone: true,
 imports: [ReactiveFormsModule,CommonModule],
 templateUrl: './student-form-component.html',
 styleUrls: ['./student-form-component.scss']
})

See how we do the imports
ReactiveFormsModule: since we are using Angular reactive form
CommonModule : for http connection

STUDENTFORMCOMPONENT

HOW TO SUBMIT ?

APP.ROUTES.TS

 {path: "students/add", component: StudentFormComponent}

Testing : http://localhost:4200/students./add

Localhost:4200/students/add
sends us to StudentFormComponent which is in student-
form.component.ts (initialises everything_)

displays the view which is student-form.component.html (using the
corresponding css)

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Completing Student CRUD with Delete and Edit
functionalities

STEPS
Modify the list component (view / html) to add columns for edit and delete
Update the StudentService - insert the deleteStudent method
Modify the list component (ts) for delete functionality
Testing

Modify the StudentService - insert the updateStudent method and
getStudentById
Modify the form component (ts) to detect edit link has been clicked on the
list and execute the updateStudent method

Modify the NgInit
Modify the OnSubmit

Configure Angular Routing for the Form (app.routes.ts)
Test
Commit to Github

ADDING EDIT AND DELETE LINKS

Modify the list component (view / html) to add a column - add edit
link and delete button

In the header :
 <th>Actions</th>

In the body :
<td>
<a [routerLink]="['/students/edit', student.studentId]">Edit
<button
(click)="deleteStudent(student.studentId)">Delete</button>
</td>

UPDATE STUDENTSERVICE

Update the StudentService - insert the deleteStudent method
 /**
 * Deletes a student by ID.
 * @param studentId The ID of the student to delete.
 * @returns An observable indicating the result of the delete
operation.
 */

 deleteStudent(studentId: number): Observable<void> {
 return this.http.delete<void>(`${this.apiUrl}/${studentId}`);
 }

MODIFY THE FORM COMPONENT (TS)
 deleteStudent(studentId: number) {
 const confirmed = confirm('Are you sure you want to delete this student?');
 if (confirmed) {
 console.log('Deleting student with ID:', studentId);
 this.studentService.deleteStudent(studentId).subscribe({
 next: () => {
 console.log('Student deleted successfully');
 this.students = this.students.filter(s => s.studentId !== studentId);
 },
 error: (error) => {
 console.error('Error deleting student:', error);
 }
 });

 }
}

UPDATE STUDENTSERVICE

/**
 * Updates a student by ID.
 * @param studentId The ID of the student to update.
 * @param student The updated student data.
 * @returns An observable containing the updated student.
 */

 updateStudent(studentId: number, student: Student):
Observable<Student> {
 return this.http.put<Student>(`${this.apiUrl}/${studentId}`, student);
 }

MODIFY FORM COMPONENT

Modify the form component (ts) to detect edit link has been clicked
on the list and execute the updateStudent method

In the class add :
isEditMode: boolean = false; // to know if we are in edit or add
mode
studentId!: number; // to get id for the student we want to edit

NGONINIT() METHOD

INSIDE THE ONSUBMIT

TESTING
app.routes.ts

{path: "students/edit/:studentId", component: StudentFormComponent}

Committing to GitHub
 >> git branch
 >> git checkout -b frontend/feature-student-edit-delete
 >> git add .
 >> git commit -m "Committing edit and delete functionalities for student
only”
 >> git push

On GitHub
 Create a Pull Request with a comment
 Then if no conflict, Team Leader will approve and merge with the main (check
main branch to see updates)

