
FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Installing / Configuring React 



REACT (REACT.JS OR REACTJS)

It has 3 basic principles:
Nature: A JavaScript library for building user interfaces. It's often described
as "just the V (view) in MVC," meaning it's highly focused on UI components.

Best For: Single-page applications (SPAs), complex UIs, large-scale
applications

Component-Based: Encourages building UIs from small, isolated, reusable
components.

We will TypeScript to write our code (to maintain consistency with
Angular and also it is currently an excellent skill required, for Full Stack
development)



STEP 1: CREATE A NEW REACT PROJECT WITH VITE

Open your terminal or command prompt ; create a directory called
ClinicApp
Create backend with JavaSpring boot using SpringInitializr, etc
Navigate to the directory (ClinicApp) where you want to create your
project.

Run the Vite command to create a new React project
 >>npm create vite@latest frontend -- --template react-ts

npm create vite@latest: Invokes the Vite project scaffolder.
frontend : The name of your new project directory.
-- --template react-ts: Specifies that you want a React project with TypeScript.





INSTALL DEPENDENCIES

Navigate into your new project directory and install dependencies:

 >>cd frontend
 

 >>npm install
 

 >>npm run dev

This will usually start the server on http://localhost:5173/ (Vite's default
port). Open that URL in your browser, and you should see the default
Vite + React welcome page.



RUNNING YOUR ANGULAR APP

Once the folder is created, open it in VS Code.
 >> npm install  (in VS Code inside the folder)

Let us check if our angular front end is working by opening a terminal
inside VS code :

 >> ng serve 

Normally, it will be using : http://localhost:4200. 

Add this line in RestController to allow access to backend
@CrossOrigin(origins = "http://localhost:4200")

http://localhost/


CROSS DOMAIN
Remember to add CORS for each frontend to allow cross domain access
to backend (as each serves on a different port)



FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Our ClinicApp - Doctor Entity



A BRIEF OF THE CLINICAPP



DOCTOR ENTITY

We first test all the endpoints for the Doctor entity. Follow these
steps :

Create the following :
 Doctor model 
 DoctorController
 DoctorService
 DoctorRepository
 Doctor endpoint testing with postman



DOCTOR MODEL



 DOCTORCONTROLLER



DOCTORSERVICE



DOCTORREPOSITORY



TESTING USING POSTMAN

See demo.



GITHUB

echo "# ClinicApp" >> README.md
git init
git add README.md

git commit -m "Committing Doctor endpoints"
git branch -M main

git remote add origin https://github.com/rajeev-
khoodeeram/ClinicSpringBoot.git

git push -u origin main



FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Creating your React frontend



WRITING THE DOCTOR MODEL (TYPESCRIPT INTERFACE)

Just like in Angular, it's good practice to define the shape of your data
using TypeScript interfaces for type safety.

Right click on src and create a new folder types (models in Angular)
and add Doctor.ts (Use .ts for non-UI related logic). 



API URL
In React, if multiple services need the same API base URL, the clean
approach is to store it in one place and import it everywhere. 

 Use .env.development → for local dev.
 Use .env.production → for deployed app.
 Git should not commit secrets → add .env to .gitignore.

We will use a .env file in the root folder (because we are using VITE !!) :

VITE_API_URL=http://localhost:8080/api



SET UP AN API UTILITY

React's equivalent of a "Service"

In React, you often create simple utility files to encapsulate API calls.

IMPORTANT: Remember to adjust your Spring Boot @CrossOrigin
annotation to include http://localhost:5173 (or whatever port Vite uses)
if you don't have a global CORS configuration that handles all local
development ports.

Use .ts for non-UI related logic; so this file will be saved as
DoctorService.ts in services folder 



DOCTORSERVICE.TS



WHERE ARE WE ?



FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Listing doctors 



CREATING THE DOCTORLIST COMPONENT

Create components folder (and a subfolder for each entity as each
will contain two files : a UI and a css)

 Purpose: Reusable UI building blocks (React components).
 Components import models for typing and services for data.



DOCTORLIST.TSX



LISTING DOCTORS



HTTP SPECIFIC : GETMAPPING

With SSR:
User requests /home.
Angular runs on the server (Node.js) and generates HTML for /home.
Browser gets ready-to-render HTML instantly.
Angular JavaScript loads and "hydrates" (adds interactivity).



DON’T FORGET THE CSS FILE



EDIT APP.TSX

 <h1>Vite + React</h1>
   <DoctorList />
  </>
 )
}
export default App



FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

ClinicApp : Adding a doctor 



ADDING A NEW DOCTOR

Step 1:Add createDoctor function in DoctorService.ts

Step 2: Create the DoctorCreate.tsx in folder components with
DoctorCreate.css

Step 3: Add a link that will allow users to navigate to the form for
adding a new doctor

Step 4: Add route in App.tsx

Step 5: Test the application



CREATEDOCTOR



CREATING THE FORM

Things to remember :
We have 5 fields with Id being auto increment
Specify error and success messages 

Please note that each input field must include value and onChange:

<input type="text" id="doctorFirstName" value={doctorFirstName}
onChange={(e) => setDoctorFirstName(e.target.value)} />



THE FORM 



HOW TO HANDLE FORM SUBMISSION ?



CALLING CREATEDOCTOR



THE HTML FORM



FINAL STEPS



FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Editing a doctor



WHERE TO CREATE THE ANGULAR FRONTEND ?



COMMAND LINE



TYPES OF ANGULAR APP



HTTP SPECIFIC : GETMAPPING



RUNNING YOUR ANGULAR APP



FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Deleting a doctor



MODIFY THE LIST



UPDATE DOCTORSERVICE



HANDLE THE DELETE ACTION


