e

N

FULL STACKDEV

spring
boot

Installing / Configuring React

e |t has 3 basic principles:
o Nature: A JavaScript library for building user interfaces. It's often described
as "just the V (view) in MVC," meaning it's highly focused on Ul components.

o Best For: Single-page applications (SPAs), complex Uls, large-scale
applications

o Component-Based: Encourages building Uls from small, isolated, reusable
components.

e We will TypeScript to write our code (to maintain consistency with
Angular and also it is currently an excellent skill required, for Full Stack

development)

¢ Open your terminal or command prompt ; create a directory called
ClinicApp

e Create backend with JavaSpring boot using Springlnitializr, etc

e Navigate to the directory (ClinicApp) where you want to create your
project.

e Run the Vite command to create a new React project
e >>npm create vite@latest frontend -- --template react-ts

e npm create vite@latest: Invokes the Vite project scaffolder.
o frontend : The name of your new project directory.
o -- --template react-ts: Specifies that you want a React project with TypeScript.

(base) rajeev@Rajeev-Khoodeeram git % npm create vite@latest sessiond4d-react -- -

-template react-ts
Need to install the following packages:

create-vite@7.0.3
Ok to proceed? (y) vy

> npx

> "create-vite" sessiond4-react --template react-ts

|
¢ Scaffolding project in /Users/rajeev/git/session4-react...

L Done. Now run:

cd sessiond-react
npm install
npm run dev

(base) rajeev@eRajeev-Khoodeeram git % cd

Navigate into your new project directory and install dependencies:

(base) rajeev@Rajeev-Khoodeeram sessiond-react % npm run dev

>>cd frontend > session4-react@0.0.0 dev

> vite

>>Npm install VITE v7.0.6 245 ms

» Local: http://1ocalhost:5173/
--host

>>Npm run dev h + enter

This will usually start the server on http://localhost:5173/ (Vite's default
port). Open that URL in your browser, and you should see the default
Vite + React welcome page.

Once the folder is created, open it in VS Code.
>> npm install (in VS Code inside the folder)

Let us check if our angular front end is working by opening a terminal
Inside VS code::
o >>ng serve

Normally, it will be using : http://localhost:4200.

Add this line In RestController to allow access to backend
o @CrossOrigin(origins = "http://localhost:4200")

http://localhost/

¢ Remember to add CORS for each frontend to allow cross domain access
to backend (as each serves on a different port)

@RestController
@RequestMapping('"/api/students")

@CrossOrigin(origins = "http://localhost:5176")
StudentRestController {

e

O

FULL STACKDEV

spring
boot

Our ClinicApp - Doctor Entity

prescription
prescrtiption_id

appointment_id
medications

doctor
doctor_id

doctor_firstname
doctor_lastname
doctor_specialization
doctor_phonenumber
doctor_email

appointment
appointment_id
doctor_id
patient_id
appointment_date
appointment_time

patient
patient_id
patient_firsthame
patient_lasthame
patient_phone
patient_email
patient_address

invoice

invoice_id

appointment_id
patient_id
amount
issued_date

¢ \We first test all the endpoints for the Doctor entity. Follow these
steps :

e Create the following :
o Doctor model
o DoctorController
o DoctorService
o DoctorRepository
o Doctor endpoint testing with postman

@Entity
@Table(name = "doctor")
public class Doctor {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY
@Column(name = "doctor_id") ﬁiﬁiﬁ? e : Zﬁ:;mm%:
private int doctorld; i MS SQL Se St arink
mySQL /o.
@& postgres T [

@Column(name = "doctor_firstname") v Bl Database | ==
> & bankine e Column Name #[Data type

v & clinic = * doctor_id 1int4
. B3 Constraints)
v [Sche . doctor_firstname 2 varchar(255
v [pu | Foreign Keys doctor_lastname 3 varchar(255

)

')

v E7 M Indexes doctor_specialization 4 varchar(255)
B)

)

doctor X

Properties | & Data 43 Diagram

Table Name: doctor Object ID:

private String doctorFirstName;

@Column(name = "doctor_lastname")
private String doctorLastName;

i Dependencies doctor_phonenumber 5 varchar(255

= doctor_email 6 varchar(255
Bl References

@Column(name = "doctor_specialization")

private String doctorSpecialization; Triggers
M Rules
|

B2 Policies

@Column(name = "doctor_phonenumber")
private String doctorPhoneNumber;

| 7] Statistics

Permissions

DDL
Name
@Column(name = "doctor_email") > [gBookmarks Virtual

private String doctorEmail; > B Dashboards
> @@ Diagrams

@RestController
@RequestMapping("/api/doctors")
@CrossOrigin(origins = "http://localhost:5173")
public class DoctorController {

private final DoctorService doctorService;

public DoctorController(DoctorService doctorService) {
this.doctorService = doctorService;

@GetMapping

public ResponseEntity<List<Doctor>> getAllDoctors() ﬂ
List<Doctor> doctors = doctorService.findAllDoctors():;
return new ResponseEntity<>(doctors, HttpStatus.OK);

@GetMapping (" {id}")
public Doctor getDoctorById(@PathVariable int id) {
return doctorService.findDoctorById(id);

@PostMapping
public Doctor createDoctor(@RequestBody Doctor doctor) {
return doctorService.saveDoctor(doctor);

@PutMapping (" {id}")
public Doctor updateDoctor(@PathVariable int id, @RequestBody Doctor doctor) {
return doctorService.updateDoctor(id, doctor);

@Service
public class DoctorService {

private final DoctorRepository doctorRepository;

public DoctorService(DoctorRepository doctorRepository) {
this.doctorRepository = doctorRepository;

public List<Doctor> findAllDoctors() {
return doctorRepository.findAll();

public Doctor findDoctorById(int id) {
return doctorRepository.findBylId(id).orElse(other:null);

public Doctor saveDoctor(Doctor doctor) {
return doctorRepository.save(doctor);

public Doctor deleteDoctor(int id) {
Doctor doctor = findDoctorById(id);
if (doctor != null) {
doctorRepository.deleteById(id);

return doctor;

@Repository

DoctorRepository JpaRepository<Doctor, Integer> {

i

Yy
7 7 2775
i

/7,
=
=7

T

o

TESTING USING POSTMAN

777/

=
= 7777777/ //

=)

e echo "# ClinicApp" >> README.md
o Sitinit
e gitadd README.md

lj,i ClinicSpringBoot ' public

e git commit-m "Committing Doctor endpoints"
e git branch -M main

8 backend

BB frontend

e git remote add origin https://github.com/rajeev- k.
khoodeeram/ClinicSpringBoot.git :

[0 README

e git push -u origin main ClinicSpringBoot

e

O

FULL STACKDEV

spring
boot

Creating your React frontend

o Just like in Angular, it's good practice to define the shape of your data
using TypeScript interfaces for type safety.

e Right click on src and create a new folder types (models in Angular)
and add Doctor.ts (Use .ts for non-Ul related logic).

export interface Doctor {
doctorld: string;
doctorFirstName: string;
doctorLastName: string;

doctorSpecialization: string;
doctorPhoneNumber: string;
doctorEmail: string;

e InReact, if multiple services need the same API| base URL, the clean
approach is to store it in one place and import it everywhere.

e Use .env.development - for local dev.
e Use .env.production - for deployed app.
e Gitshould not commit secrets » add .env to .gitignore.

e We will use a .env file in the root folder (because we are using VITE !})

e VITE_API_URL=http://localhost:8080/ap]

¢ React's equivalent of a "Service"
e |[n React, you often create simple utility files to encapsulate API calls.

e IMPORTANT: Remember to adjust your Spring Boot @CrossOrigin
annotation to include http://localhost:51/3 (or whatever port Vite uses)
If you don't have a global CORS configuration that handles all local
development ports.

e Use .ts for non-Ul related logic; so this file will be saved as
DoctorService.ts in services folder

import { type Doctor } from

. . /types/Doctor"”;
t API_URL = 1import.meta.env.VITE_API URL;

export c getDoctors = async (): Promise<Doctor[]>

{
| response = await fetch(${API_URL}/doctors);
console.log('API _URL:"', API_URL);

if (!'response.ok) {
throw n Error('Failed to fetch doctors'):

}

return response.json();

b

EXPLORER

v FRONTEND

> node_modules

> public

V' SIC
> assets
> components
Vv services
DoctorService.ts
v types

Doctor.ts

v BACKEND

> .vscode
V' SIc
v main
v java/ca/cloudace/backend
v controller
DoctorController.java
v model
Doctor.java
v repository
DoctorRepository.java
Vv service

DoctorService.java

N

FULL STACKDEV

spring
boot

Listing doctors

e —
Ny
S

Presented by:

Rajeev Khoodeeram,

{
f
!
£

e Create components folder (and a subfolder for each entity as each
will contain two files : a Ul and a css)

e Purpose: Reusable Ul building blocks (React components).
e Components import models for typing and services for data.

EXPLORER

v FRONTEND

> node_modules

> public

Vv SIc
> assets
Vv components
v doctors
DoctorCreate.css
DoctorCreate.tsx

DoctorlList.css

DoctorList.tsx

import {type Doctor } from "../../types/Doctor";

import { useEffect, useState } from "react";
import { getDoctors } from "../../services/DoctorService";

import './DoctorList.css’;

DoctorList = ()

[doctors, setDoctors] = useState<Doctor[]l>([]);

useEffect (() {
fetchDoctors =

try {

() 1

doctorsData = await getDoctors();
setDoctors(doctorsData);
} catch (error) {
console.error('Error fetching doctors:', error);

}

r;

return (

mi: Doctor List

I
Col N # Data t Identit
BN Columns olumn Name | ata type | entity

Flrst Name W doctor_irfi 1 int4 Always
‘h>Last Name</th _ doctor_firsthame 2 varchar(255
th>Specialization</th Foreign Keys doctor_lastname 3 varchar(255
th=Phone Number</th Indexes doctor_specialization 4 varchar(

th>Email</th doctor_phonenumber 5 varchar(255
(

doctor_email 6 varchar(255

Dependencies

)
)
)
)
)

References

{doctors.map((doctor) => (
Tf key—"doctor.doctorId
td>{doctor.doctorId}</td

{doctor.doctorFirstName}
{doctor.doctorLastName}
{doctor.doctorSpecialization}
{doctor.doctorPhoneNumber}</td
{doctor.doctorEmail}</td

export default DoctorList;

e With SSR:
o User requests /home.
o Angular runs on the server (Node.|s) and generates HTML for /home.
o Browser gets ready-to-render HTML instantly.
o Angular JavaScript loads and "hydrates" (adds interactivity).

INAngular | exoetenas 2

Learn with Tutorials &

Hello, session3-angular

Congratulations! Your app is running. &

Angular Language Service 4

Angular DevTools &

table {

width: 100%;
border—-collapse: collapse;

th, td {
padding: 12px 15px;
border: 1lpx solid #4d0@a0a;

background—-color: #6e0808;
text-align: left;

round-color: #502828:

.add-doctor {
margin: 20px 0;
text-align: left:

<hl>Vite + React</hl>
<DoctorList />
<[>

)

}
export default App

</div>
<h1>Vite + React</hl:
T <div className="card"
button onClick={() => setCount((count) => count + 1)}>
count is {count}
</button:
<p>

Edit <code>src/App.tsx</code> and save to test HMR
</div>
<p className="read-the-docs":
Click on the Vite and React logos to learn more
/p>
<DoctorList />

O

FULL STACKDEV

e S —

spring
boot

ClinicApp : Adding a doctor

Presented by:

Rajeev Khoodeera

e Step 1:Add createDoctor function in DoctorService.ts

e Step 2: Create the DoctorCreate.tsx in folder components with
DoctorCreate.css

e Step 3: Add a link that will allow users to navigate to the form for
adding a new doctor

e Step 4: Add route in App.tsx

e Step 5: Test the application

doctor

export createDoctor = (doctor: Doctor):
Promise<Doctor> {
response = await fetch(${API_URL}/doctors’, {
method: 'POST',
headers: {

'Content-Type': 'application/json’,
},

body: JSON.stringify(doctor),
i

if ('response.ok) {
throw Error('Failed to create doctor'):

return response.json();

e Things to remember :
o We have b fields with Id being auto increment
o Specify error and success messages

e Please note that each input field must include value and onChange:

<input type="text" id="doctorFirstName" value={doctorFirstName}
onChange={(e) => setDoctorFirstName(e.target.value)} />

React, { type FormEvent } from "react";

{ createDoctor } from "../../services/DoctorService";

{ useNavigate } from "react-router-dom";
"./DoctorCreate.css”

doctor from '../../assets/doctor.png’;

const DoctorForm : React.FC = ()

const [doctorId, setDoctorId] = React.useState<string>('");
const [doctorFirstName, setDoctorFirstName] =
React.useState<string>("'"');

const [doctorLastName, setDoctorLastName] =
React.useState<string>("'");
const [doctorSpecialization, setDoctorSpecialization] =
React.useState<string>("'"');
const [doctorPhoneNumber, setDoctorPhoneNumber] =
React.useState<string>("'");

const [doctorEmail, setDoctorEmaill] =

React.useState<string>("'");

const handleSubmit = (event: FormEvent<HTMLFormElement>) => {
event.preventDefault
let doctor = null;

doctorFirstName &&
doctorLastName &&
doctorSpecialization &&
doctorPhoneNumber &&
doctorEmail

console. log("All fields are filled. Submitting form...");

doctor = {
doctorld,
doctorFirstName,

doctorLastName,
doctorSpecialization,
doctorPhoneNumber,
doctorEmail

createDoctor(doctor)
.then((response) =>
console. log("Doctor created successfully:", response);

setDoctorId(0);
setDoctorFirstName('"');
setDoctorLastName('"');
setDoctorSpecialization('');
setDoctorPhoneNumber('"');
setDoctorEmail('"');

navigate('/doctors');

)
.catch((error) =>
console.error("Error creating doctor:", error);

) ;

return |(
div className="add-doctor-form"
img src=idoctorphoto; alt="Doctor" className="doctor-image" width="20%"
h2>{1sEditMode ? 'Edit Doctor' : 'Create Doctor' h2
form onSubmit={handleSubmit
div className="form-group"
label htmlFor="doctorFirstName">First Name</label

input type="text" id="doctorFirstName" value=1doctorFirstName
onChange={(e) => setDoctorFirstName(e.target.value)
daiv
div className="form-group"
label htmlFor="doctorLastName">Last Name</label
input type="text" id="doctorLastName" value=1doctorLastName
nange={(e) => setDoctorLastName(e.target.value)

Step 3: Add a link on DoctorList that will allow users to navigate to the form for adding a new
doctor

className="add-doctor"

href="/doctors/create">Create New Doctor

Step 4: Add route 1n App.tsx

Route path="/doctors/create" element={<DoctorForm

Let us add an image

Download image
Place 1n assets

Modity DactorCreate.tsx

import doctor from '../../assets/doctor.png’;

src={idoctor; alt="Doctor" className="doctor-image"
idth=1"20%"

N

FULL STACKDEV

spring
boot

! Editing a doctor

SO

~——
N
S >

Presented by:

Rajeev Khoodeeram,

{
f
!
£

Step 1 : Add link on the list as Action (th also !)

button onClick={() => navigate(/doctors/edit/$

{doctor.doctorId}) }>Edit</button

Route path="/doctors/edit/:id" element={<DoctorForm

Step 2 : Add route in App.tsx

th>Actions</th
o
thead
tbody
doctors.map((doctor) => (
tr key={doctor.doctorlId
td>{doctor.doctorldi</td
td><doctor.doctorFirstName ;</td
doctor.doctorLastName}</td
doctor.doctorSpecialization td
doctor.doctorPhoneNumber</td
doctor.doctorEmail </td:

button onClick={() => navigate(/doctors/edit/${doctor.doctorId}) }>Edit</button

Step 3 : Modify DoctorService.ts to update a doctor

doctorld

updatedData

export updateDoctor = (doctorId: number,
updatedData: Partial<Doctor>): Promise<Doctor> {
response = await fetch(${API_URL}/doctors/
doctorId} , {
method: 'PUT',

headers: {

'Content-Type': 'application/json',
|
body: JSON.stringify(updatedData),
r);

if (!'response.ok) {
throw Error('Failed to update doctor');

return response.json();

Step 4 : Modify DoctorCreate.tsx

const { id } = useParams():

const API_URL = import.meta.env.VITE_API_URL + '/doctors'’;
const isEdit = Boolean(id);

useEffect(() => {

fetch(${API URL}/${id}")

.then((res) => res.json())

.then((data) => {
setDoctorId(data.doctorId);
setDoctorFirstName(data.doctorFirstName);
setDoctorLastName(data.doctorLastName):

setDoctorSpecialization(data.doctorSpecialization);
setDoctorPhoneNumber(data.doctorPhoneNumber);

setDoctorEmail(data.doctorEmail);

if (id) {

updateDoctor(Number(id), doctor)

. then((response) {

console. log("Doctor updated successfully:", response);
})

.catch((error) {

console.error("Error updating doctor:", error);

});

isEdit ? "Edit Doctor" : "Create Doctor"

type="submit">{1sEdit ? "Update Doctor" : "Create
Doctor™

TEST !!

O

FULL STACKDEV

spring
boot

SO

~——
Ny
S

i Deleting a doctor

Presented by:

Rajeev Khoodeeram,

{
f
!
E

Step 1 : Add link on the list as Action

onClick=1{() handleDelete(doctor.doctorId) }>Delete

This button will invoke a handleDelete inside the DoctorList
component and as such there is no need to add a route !!

td
button onClick={() => navigate(/doctors/edit/${doctor.doctorId})}>Edit</button

button onClick={() => handleDelete(doctor.doctorId) }>Delete</button
td

Step 2 : Modify DoctorService.ts

dparam doctorld
(urns

const deleteDoctor = async (doctorId: number):

const confirmed = confirm("Are you sure you want to
delete this doctor?"):
if (!confirmed) {
return null;

const response = await fetch(${API_URL}/doctors/$
{doctorId} , {
method: 'DELETE’,

if (!response.ok) {
throw new Error('Failed to delete doctor');

const data = await response.json(); // I have modified
the backend delete to return a json object
return data;

Step 3 : Modify DoctorList.tsx

hand leDelete
try {

(doctorId: number)

code = await deleteDoctor(doctorId);
if (code !==) {
setDoctors((prevDoctors)
prevDoctors. filter((doctor) doctor.doctorld !==
doctorId)

) ;
I

} catch (error) {

}
r;

console.error('Error deleting doctor:', error);

