e

N

FULL STACKDEV

spring
boot

Introduction to Vue.js as frontend

e Vue.|s offers a progressive framework approach, being
approachable for beginners while powerful enough for complex
applications. We'll use modern Vue 3 syntax, specifically the
Composition API with <script setup>, which provides a very clean
and explicit way to write component logic.

e As with Angular and React, your Spring Boot backend will remain the
same, serving data from http://localhost:8080/api/students. You'll
just need to ensure your backend's CORS configuration allows
requests from Vue's default development server port, which is
typically http://localhost:51/6 (since we'll use Vite).

e For this section, we will tackle the Human Resource application
which is build using Vue and mySQL.

o @CrossOrigin(origins = "http://localhost:5176") - in controller!

e Create new directory inside your git repo - here it is frontend folder
Inside HumanResourceApp
o Navigate inside this directory
o Run: >>npm create vue@latest frontend
e Make sure you install extensions for Vue in Visual Studio Code
o Check all options
o Navigate into your new project directory (here it is frontend) and
install dependencies
o >>npm install
e Run the development server to verity everything works
o >>npm run dev

(base) rajeev@kRajeev-Khoodeeram git % cd session6-vue

(base) rajeev@kRajeev-Khoodeeram session6-vue % npm create vue@latest
Need to install the following packages:

create-vue@3.18.6

OK to proceed?! (y) ¥

npx
"create-vue"
Vue.js - The Progressive JavaScript Framework

Project name (target directory):

Select features to inGludes Ny ouUrspRoiects:

EREERERN

| B

C @ localhost:5176
Prettier (code formatting)

lite + Vue 3. What's next?

[0 Documentation

e But For this section, | will show you how to work with a
downloaded template :shadcn-vue-landing-page

e Rename it as frontend and put inside HumanResourceApp
e So your folder should look like this:

e HumanResourceApp N
O fI”O nteﬂd I HUMANRESOURCEAPP L 550 &

> .vscode

O baC kend > backend

> frontend

= Init_hr.sql
README.md

¢ Open frontend folder in VS Code
o >>npm install

e Remember v e
o Index.html calls —> main.ts which calls —> App.vue

s vite-env.d.ts

.gitignore

{} components.json

<7 index.html

e Run npm install vue-router (will create folder router and add index.js (see
github))
o This provides all the routes for your app - if not generated then you create
It manually !

e I[mportant to note here - We will have two interfaces :
© one Is the website the public views
o the other one is the admin view for managing the database

We will modify the main.ts to cater for routing
main.ts

import { createApp } from "vue';
import App from "./App.vue";

import "/assets/index.css";

import router from "./router/index.js";

const app = createApp(App);
app.use(router);
app.mount("#app");

main.ts has been modified to take routing into consideration

const routes =

{

path: "/",
component: PubliclLayout,
children: |
{ path: "", component: Home },
{ path: "about", component: About },

4 7

}
{
path: "/admin",
component: AdminLayout,
children:
{ path: "employees", component: () => import("@/views/admin/Employees.vue") },
{ path: "department", component: () => import("@/views/admin/Department.vue") },
{ path: "employees/create'", component: () => import("@/components/employee/EmployeeNew.vue") },
{ path: "employees/edit/:id", component: () => import("@/components/employee/EmployeeNew.vue"), props:
}
I;

We will modify the main.ts to cater for routing
main.ts

import { createApp } from "vue';
import App from "./App.vue";

import "/assets/index.css";

import router from "./router/index.js";

const app = createApp(App);
app.use(router);
app.mount("#app");

main.ts has been modified to take routing into consideration

Centralized ts or utils files (it is in the lib folder)
o Create a utils folder in src
o Create your file (ex here formatDate.ts) or add your
function in the same utils.ts

Formatting date from database in Due
o >>npm install dayjs

iImport dayjs from "dayjs";

export function formatDate(dateStr: string): string {
return dayjs(dateStr).format("DD-MM-YYYY");

}

e All views (like pages) are stored in the views folder
e All models are stored in the types folder

e All endpoints(under entity name for example employee will
have EmployeeAPI, etc) are stored in services folder

e All associated functionalities (list, new, etc) are stored in the
components folder
o (under entity name for example employee will contain
EmployeelListComponent, EmployeeNewComponent, etc)

e The admin site will be accessible using :
o http://localhost:5173/admin/employees

e SO we have two folders admin and client inside views - for this
section we will focus on the admin site

e Step 1. Create admin.css
e Step 2: Import Navbarvue from existing components
e Step 3: Create AdminMainView.vue

~ Vviews
v admin
¥ admin.css

V¥ AdminMainView.vue

V¥ Navbar.vue

N

FULL STACKDEV

spring
boot

HumanResourceApp backend
: the Employee entity

Presented by:

v JAVA PROJECTS
v [backend

e Create the following : - s
» Employee mode! S
> EmployeeRepository e
o EmployeeService () eactouacebackend mode
o EmployeeController 7 cocloudace backend rposicry

v {} ca.cloudace.backend.service

%2 EmployeeService

e Employee endpoint testing with postman

@Entity
@Table(name = "employee")
public class Employee {

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long employeeld;

@CDlumn(name — “employee_firstnameu)
private String employeeFirstName;

@Column(name = "employee_lastname") Column Name ‘ #‘ Data Type

orivate String employeelLastName; . .
| 2 S employee_lid 1 Int

@Column(name = "employee_email") employee_firstname 2 varchar(255)
private String employeeEmail; Sl CERERQEINE 3 varchar(255)
employee_email 4 varchar(255)
employee_phone 5 varchar(255)
employee_hiredate 6 datetime(6)
employee_title / varchar(255)
employee_salary 8 varchar(255)
department_id 9 int

@Column(name = "employee_phone")
private String employeePhone;

EmployeeRepository.java M X

src > main > java »> ca » cloudace > backend > repository > EmployeeRepository.java > ...

package ca.cloudace.backend.repository;

import org.springframework.data.jpa.repository.JpaRepository;

import ca.cloudace.backend.model.Employee;

-

public interface EmployeeRepository
extends JpaRepository<Employee, Long> {

@Service
public class EmployeeService {
private final EmployeeRepository employeeRepository;

public EmployeeService(EmployeeRepository employeeRepository) {
this.employeeRepository = employeeRepository;

public List<Employee> getAl1Employees() {
return employeeRepository.findAll();

public Employee getEmployeeById(Long id) {
return employeeRepository.findById(id).orElse(other:null);

public Employee saveEmployee(Employee employee) {
return employeeRepository.save(employee);

@RestController
@RequestMapping("/api/employees")
@CrossOrigin(origins = "http://localhost:5173")
public class EmployeeController {

private final EmployeeService employeeService;

public EmployeeController(EmployeeService employeeService) {
this.employeeService = employeeService;

@GetMapping
public List<Employee> getAl1Employees() {
return employeeService.getAlLlEmployees();

@GetMapping("/{id}")
public Employee getEmployeeById(@PathVariable Long id) {
return employeeService.getEmployeeById(id);

Get all employees

http://localhost:8080/api/employees

Params Auth Headers (6) Body Scripts Settings

Query Params

Key Value Description

200 OK 41 ms 1.53 KB
[> Preview [Visualize
employeeld employeeFirstName employeeLastName employeeEmail employeePhc

John Smith jsmith@gmail.com

)yahoo.co 342 employee X

Properties | (@ Data | 43 Diagram

obyahoo.co 347

Enter a SQL expression to filter results (use Ctrl+Space)

employee_firstname employee_lastname employee_email

John Smith jsmith@gmail.com
xcvvd VCVCVCXVCX vexvxeve@yahoo.co
xcvvd VCVCVCXVCX vexvxeve@yahoo.co
sdfdf sdfsdf dsfsdfd@yahoo.com
John Smith jsmith@gmail.com

e

N

FULL STACKDEV

spring
boot

Employee model and Service - Vue

Presented by:

export Employee {
emp loyeeld: number;
emp loyeeFirstName: string;
emp loyeeLastName: string;
emp loyeeEmail: string;
emp loyeePhone: string;
emp loyeeHireDate: string;
emp loyeeTitle: string;
emp loyeeSalary: number; S co——- Column Name | #{Data Type
departmentId: number; |

employee_id 1 int
employee_firstname 2 varchar(255)

employee_lastname 3 varchar(255

] Cunstralnts

Formgn Keys

)
References employee_email 4 varchar(255)
W’ employee_phone 5 varchar(255)
employee_hiredate 6 datetime(6)
employee_title / varchar(255)
Partitions employee_salary 8 varchar(255)
'| Statistics department_id 9 int

Indexes

DDL

¢ STEP1
o Create .env file to store API_URL
o VITE_API_URL=http://localhost:8080/api

e STEP2

e Modify the EmployeeServices to get all employees from Spring backend.
e export const getAllEmployees = async () =>{

e console.log("API URL:", API_URL);

e constresponse = await fetch('${API_URL}/employees’);
e if (lresponse.ok) {

e throw new Error('Failed to fetch employees');

o }

e const employees: Employee[] = awalit response.json();
e console.log("Fetched employees:", employees);

e return employees;

o}’

p v-if="employees. length === 0">No employees found.</p
table v-else class="employees-table":
thead
tr

th>First Name</th
th>Last Name</1
th>Email</th
th>Phone</th
th>Hire Date
th>Title</th:
th>Salary</th
th>Actions</th

tr v—for="employee in employees" :key="employee.employeeld"
td>{{ employee.employeeFirstName }}</td
td>{{ employee.employeelLastName |}}</td
td>{{ employee.employeeEmail |}}</td

v—-for="employee emp lLoyees" :key="employee.employeeld"
{{ employee.employeeFirstName }}
{{ employee.employeelLastName }}
{{ employee.employeeEmail }}

onMounted(async () => {
try

employees.value = await getEmployees();
console. log("Fetched employees:", employees.value);

catch (error
console.error("Error fetching employees:", error);
finally

O () http://localhost:51 dmin/emp

I | ¥ | ShadcnVue Features - Department

Create Employee
Employee List

Employees

Leave

e N L

VCVCVCXVCX vexvxeve@yahoo.co 3423434324

26-08-2025

23-08-2025

GET

Params Auth

Query Params

Body

Key

+ JSON >

employeeld

Get all employees

http://localhost:8080/api/employees

Headers (6) Body Scripts Settings

200 OK

Preview [~ Visualize

employeeFirstName

John

employeeLastName

Smith

&) Save v

Description

employeeEmail

jsmith@gmail.com

VCXvXcvc@yahoo.co

Share | (7

Send

Bulk Edit

esponse
&
employeePh¢

9053756999

3423434324

N

FULL STACKDEV

spring
boot

Adding an employee

e —
Ny
S

Presented by:

Rajeev Khoodeeram,

{
f
!
£

e Step 1: Add link to the list for navigating to the form : New / Add Employee
and modify the index.js for routing

e Above the list:

e Add
Employee

e Modify / check the routing in index.js

* {

e path:"employees/new",

e component: () =>
Import("@/components/employee/EmployeeNewComponent.vue’)

* }

CardContent
form
@submit.prevent="createEmployee"
class="grid gap—-4"

const contactForm = ref({
div class="flex flex-col w-full gap-1.5" - . TET
Label for="first-name">First Name</Label €emp “OYEEFlrStName' -
Input emp loyeeLastName: "",

id="first-name" " E - -l. T
type="text" €mp Loyeetmal L. -

placeholder="Leopoldo" emp'_oyeephone L ,

v-model="contactForm.employeeFirstName"

| emp loyeeHireDate: "",
A employeeTitle: "",

div class="flex flex-col w-full gap-1.5" emp "Oyeesala ry: 01’

Label for="last-name">Last Name</Label departmentId: 0,
Input .
id="last—name" }-)'
type="text"
placeholder="Miranda"
v-mode l="contactForm.employeeLastName"

i Button class="mt-4">{{ isEditing ? "Update Employee" : "Create Employee" }}</Button

const createEmployee =
if (contactForm.value.employeeFirstName.trim

contactForm.
contactForm.

contactForm
contactForm

contactForm

value.
.employeeEmail.trim
.value.
. value.
contactForm.
contactForm.

value

value
value

async () => {
emp loyeeLastName.trim

emp LoyeePhone.trim(.
emp loyeeHireDate.trim

.employeeTitle.trim() ===
.employeeSalary <= 0 ||
.value.

departmentId <= 0

const response = await fetch("http://localhost:8080/api/employees", {
method: "POST",
headers:
"Content-Type": "application/json”,

’y

body: JSON.stringify(contactForm),
});

if (response.ok) {

console. log("Employee created:", contactForm);
invalidInputForm.value = false;

window. location.href = "/admin/employees";

} else {
console.error("Error creating employee (response):", response.statusText);

}

catch (error
console.error("Error creating employee - catch:", error);

¢ Keep the same name as in Java entity class for consistency

e The contactForm object is your form model that Vue binds to input
fields with v-model.

e Changes in the form update contactForm, and changes in contactForm
update the form automatically.

Single File Component (.vue): AlLHTML, JS/TS, and CSS for the component
are in one file.

<script setup>: Variables and functions declared directly in <script setup>
are automatically exposed to the template using the Composition API.

lang="ts": Specifies that the script section is written in TypeScript.

ref(): A Vue Reactivity API function which takes an inner value and returns a
reactive and mutable ref object. When you access or mutate its .value, Vue

automatically tracks changes and updates the DOM.
o const students = ref<Student/[]>([]),
o students.value = data, (You must use .value in the <script setup> block, but
not in the <template>.)

onMounted(): A Vue lifecycle hook. The code inside onMounted() runs after
the component has been mounted to the DOM.

v-if, v-else-if, v-else: They allow you to conditionally render blocks of
content based on expressions.

v-for. It's used to iterate over an array (e.g., students) and render a block of
elements for each item.

:key="student.id": It helps Vue identify individual nodes in the list, allowing
It to efficiently update and reorder elements. It should be unique for each
item.

e @click: A shorthand for v-on:click, Vue's event listener directive. It attaches
a click event handler to the button.

e {{}} (Mustache Syntax): Used for text interpolation in the template to display
reactive data.

e <style scoped>: The scoped attribute automatically adds a unique attribute
to your component's HTML elements.

o This prevents styles from "leaking" out and affecting other parts of your
application.

N

FULL STACKDEV

spring
boot

! Deleting an employee

SO

~——
N
S >

Presented by:

Rajeev Khoodeeram,

{
f
!
£

e Add link or button on the list (EmployeeListComponent.vue)

e <putton
@click="deleteEmployee(employee.employeeld)">Delete</button>

e Or you can do Step 2 first and Step 1 second...as you wish

IIIHHHHHHIIIIIIIIIIHHHHHHHIIIIIII

Edit
100000
||IIIIIIIIIIIIIIII!!!!!IIIIIIII

Edit
Delete

67000

deleteEmployee = (id: number)

if (confirm("Are you sure you want to delete this employee?"))

console.log("Deleting employee with ID:", id);

response = await fetch(${import.meta.env.VITE_API_URL}/
employees/${id} , {
method: 'DELETE',
});
if (!response.ok) {
throw Error('Failed to delete employee');

}

return 1id;

LISTING DOCTORS

¢ We have added a confirmation popup; if yes then delete is executed.

e Please take note that if the user cancel the confirm message the
deleteEmployee is not executed.

@ localhost:5173

Are you sure you want to delete John Smith?

Don't allow localhost:5173 to prompt you again

Cancel

fetchU‘http://localhost:808®/api/employees/%{employee.employeeId}‘, {
method: "DELETE",
i

@RestController
@RequestMapping("/api/employees")
@CrossOrigin(origins = "http://localhost:5173")
public class EmployeeController {

EmployeeController.java M X

src » main » java > ca » cloudace > backend > controller > EmployeeController.java > ...
@RestController
@PutMapping("/{id}")

ICLUl Il CHIPLWYCCOC! VALC s UNUALTLININ LUYCC | 41U Clilp LuyCcc
¥ Y o o J ’ M y ’

@DeleteMapping("/{id}")
public void deleteEmployee(@PathVariable Long id) {
emp loyeeService.deleteEmployee(id);

EmployeeService.java X

src » main > java > ca > cloudace > backend > service > EmployeeService.java > Languac

@Service

public void deleteEmployee(Long id) {
emp loyeeRepository.deleteById(id);
}

N

FULL STACKDEV

spring
boot

i Updating an employee

e —
Ny
S

Presented by:

Rajeev Khoodeeram,

{
f
!
£

This 1s going to be our last functionality for the employee table. We will
perform the following steps :

Step 1 : Add edit link as Actions which will navigate to the edit form

@click="router.push({ path: "“/admin/employees/

edit/${employee.employeeld} })">Edit
We must import useRouter to allow navigation to work

import { useRouter } from "vue-router";

ey | actons
router = useRouter():

100000 Edit
Delete

path: "employees/edit/:1d",

component: () ("@/components/employee/
Emp loyeeNewComponent.vue"),

props:

NOTICE, 1T POINTS TO THE SAME FORM FOR
ADDING AN EMPLOYEE !

id

emp loyeeData

export updateEmployee = (id: number,
emp loyeeData: Partial<Employee>) {
response = await fetch(’
import.meta.env.VITE_API_URL}/employees/${id} , {
method: 'PUT',
headers: { -
'Content-Type': 'application/json’,
}s
body: JSON.stringify(employeeData),

3)i
if (!response.ok) \'

throw Error('Failed to update employee');

}

emp loyee: Employee = await response.json();

return employee;

Notice here : the function takes the employee 1d and the full employee object;
it uses the PUT method which corresponds to the PUT method in the

@PutMapping("/{id}")

Employee updateEmployee(@PathVariable Long id,
dRequestBody Employee employee) A

return employeeService.updateEmployee(id, employee);

1sEditing = ref

id = route.params.id;

if (isEditing.value) {

console. log("Updating employee with ID:", id);
updateEmployee(Number(id), {
emp loyeeFirstName,

emp loyeeLastName, contactFo r?m.employeeFirstNamé =
emp lLoyeeEmail, contactForm.employeeLastName = "";

emp loyeePhone, contactForm.employeeEmail = .

employeeHirEDatel contactFo rm.employeePhone — -
employeeTitle, contactForm.employeeHireDate = "";

employeeSalary: Number(employeeSalary), contactForm.employeelitle = ©;

departmentId: Number(departmentId), contactForm.employeeSalary

= 0;
contactForm.departmentId = 0;

. then((employee) { invalidInputForm.value
console.log("Updated Employee:", employee);

})

.catch((error) {
console.error("Error updating employee:", error);

});

console.log("Employee Updated:", contactForm);

