
FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Writing business & functional requirements and
project management

FULL ENTERPRISE WORKFLOW (1)

Confluence
Purpose: Document all business requirements, functional specs,
wireframes, and meeting notes.
Actors: Team Leader / Product Owner
Output: Clear reference for developers, QA, and stakeholders.

Jira
Purpose: Track project work using Epics → User Stories → Subtasks.
Actors: Team Leader creates Epics/User Stories; Developers are
assigned subtasks.
Output: Organized, trackable tasks mapped to code/features.

FULL ENTERPRISE WORKFLOW (2)

Cucumber / Gherkin
Purpose: Define BDD test scenarios based on user stories.
Actors: QA or Devs write feature files per Epic.
Output: Testable scenarios (acceptance criteria) for automated
testing.

Development
Purpose: Implement feature functionality.
Actors: Developers work on backend, frontend, or full-stack.
Output: Functional code per Jira tasks.

FULL ENTERPRISE WORKFLOW (4)

 Unit Testing
Junit: For testing Java code (backend, services, controllers)
Mockito: For mocking dependencies in unit tests
Purpose: Ensure code correctness and independent testing.

Commit & Git
Commit messages should reference Jira key, e.g.:

 git commit -m "EMP-101: Implement employee registration form"
Branching strategy:

main → production
develop → integration
feature/<jira-key> → task-specific work

FULL ENTERPRISE WORKFLOW (5)

Pull Request (PR)
Developers open PRs from feature branches to develop.
Team members or team leader review code and check automated
tests.

Merge to Main
After develop passes CI/CD and QA tests, team leader merges
develop into main for production deployment.

BUSINESS REQUIREMENTS - CONFLUENCE
Identify core actors and their responsibilities

Student
Program coordinator
Lecturer, etc

Write functional & non-functional requirements

TRACK PROJECT WORK - JIRA (1)

Works by organizing the whole project mainly as :
Category

Projects

Epics

User Stories

Subtasks

TRACK PROJECT WORK - JIRA (2)

Jira Space / Project : STUDENT

Epic 1: Student Registration & Authentication
Purpose: Onboard students and allow them to access the system.

User Stories under this Epic:
STUDENT-1011: Student can submit registration form with
personal details.
STUDENT-1012: Student can log in and check registration status
(Pending, Approved, Rejected).
STUDENT-1013: Student receives confirmation email after
registration.

CUCUMBER - GHERKINS

Epic 1 – Student Features
User Story 1: Student Self-Registration
Feature: Student Self-Registration - gherkin
Scenario: Successful registration

 Given I am on the student registration page
 When I enter valid personal details
 And submit the registration form
 Then I should see a confirmation message
 And my registration status should be "Pending Review"

Scenario: Registration with missing fields
 Given I am on the student registration page
 When I leave required fields blank
 And submit the form
 Then I should see validation errors for each missing field

CUCUMBER - GHERKINS

Epic 1 – Student Features
User Story 2: Status Check
gherkin

Feature: Student Registration Status Check
Scenario: View registration status
 Given I am a logged-in student
 When I navigate to the status page
 Then I should see my registration status as either "Pending
Review" or “Approved"

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Building Entity Relationships

TYPICAL ENTERPRISE WORKFLOW

Developer defines or updates entities in Java.

Run Hibernate locally (application-dev.properties !!) with ddl-
auto=create to test.

Generate the SQL schema from Hibernate (e.g., via SchemaExport).

Pass SQL to the DBA for review and modification.

Apply via a migration tool (Flyway/Liquibase).

Run app in production (USE OF application-prod.properties !!) with
ddl-auto=validate.

ENTITIES
Coordinator

A coordinator manages a course and belongs to a department
Course

A course belongs to a department (a department has many courses !)
Department

A department is found in a faculty and has a head who is a lecturer
Faculty

A faculty has a dean who is a lecturer and it has many departments
Lecturer

A lecturer belongs to a department
Module

A module belongs to a course and has one lecturer assigned to it
ModuleEnrolment

Students enrolled in modules
CourseEnrolment

Students enrolled in one and only one course
Student

ENTITIES
Coordinator

A coordinator manages a course and belongs to a department

Course
A course belongs to a department (a department has many courses !)

ENTITIES
Department

A department is found in a faculty and has a head who is a lecturer

Faculty
A faculty has a dean who is a lecturer and it has many departments

ENTITIES
Lecturer

A lecturer belongs to a department

Module
A module belongs to a course and has one lecturer assigned to it

ENTITIES
ModuleEnrolment

Students enrolled in modules

CourseEnrolment
Students enrolled in one and only one course

ENTITIES
Student

DEFINING RELATIONSHIPS

There are many types of relationships :
one-to-one

a coordinator can oversee a course, and a course has
only one coordinator assigned to it

one-to-many (many-to-one)
one student can unenroll in only one course and a
course has many students enrolled in it

many-to-many
a student can subscribe to many clubs
a club has many students as members

COURSE - COORDINATOR

Type: One-to-One

Description: One Program Coordinator can oversee only one Course, and
each Course is managed by only one Program Coordinator.

Implementation: Coordinator.courseId is a Foreign Key referencing
Course.courseId (here primary key).

DEPARTMENT - FACULTY

Type: Many-to-One

Description: One Department belongs to only one Faculty and one Faculty
can have many Departments.

Implementation: Department.facultyId is a Foreign Key referencing
Faculty.facultyId (here primary key).

DEPARTMENT - LECTURER
Type: One-to-Many

Description: One Department has many lecturers and one lecturer belongs to
only one Department.

Implementation: Department.lecturerId is a Foreign Key referencing
Lecturer.lecturerId (here primary key).
But, a department also has a head (who is a lecturer) --- complication !

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Creating the database - mySQL

FULL DATABASE OF UNVERSITYAPP

See ==> 2025-08-22-UniversityMySQLDB

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Designing backend API for remaining entities

ARCHITECTURE
@CrossOrigin(origins = "http://localhost:5176") ⟶ in controller !

Create new directory inside your git repo - here it is frontend folder
inside HumanResourceApp

Navigate inside this directory
Run : >> npm create vue@latest frontend

Make sure you install extensions for Vue in Visual Studio Code
Check all options
Navigate into your new project directory (here it is frontend) and
install dependencies
>>npm install

Run the development server to verify everything works
>>npm run dev

DON’T FORGET THE CSS FILE
Open frontend folder in VS Code

>>npm install

Remember
 index.html calls —> main.ts which calls —> App.vue

Run npm install vue-router (will create folder router and add index.js (see
github))

This provides all the routes for your app - if not generated then you create
it manually !!

Important to note here - We will have two interfaces :
 one is the website the public views
 the other one is the admin view for managing the database

MAIN.TS
We will modify the main.ts to cater for routing
main.ts

import { createApp } from "vue";
import App from "./App.vue";
import "./assets/index.css";
import router from "./router/index.js";

const app = createApp(App);
app.use(router);
app.mount("#app");

main.ts has been modified to take routing into consideration

MAIN.TS
We will modify the main.ts to cater for routing
main.ts

import { createApp } from "vue";
import App from "./App.vue";
import "./assets/index.css";
import router from "./router/index.js";

const app = createApp(App);
app.use(router);
app.mount("#app");

main.ts has been modified to take routing into consideration

UTILITIES FILE
Centralized ts or utils files (it is in the lib folder)

Create a utils folder in src
 Create your file (ex here formatDate.ts) or add your
function in the same utils.ts

Formatting date from database in Due
 >>npm install dayjs

import dayjs from "dayjs";

export function formatDate(dateStr: string): string {
 return dayjs(dateStr).format("DD-MM-YYYY");
}

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Creating endpoints for API Testing

ENDPOINTS - ENTITY

This section outlines the REST API endpoints and the underlying
business logic necessary to power the frontend features.

The API will use standard REST principles (we use postman)
GET

POST

PUT

DELETE

 FACULTY API ENDPOINTS (/API/FACULTY)

GET /api/faculty: Retrieve a list of all students (with optional
filtering/pagination parameters).

GET /api/faculty/{id}: Retrieve a single student by their ID.

POST /api/faculty: Create a new student.

PUT /api/faculty/{id}: Update an existing student's details.

DELETE /api/faculty/{id}: Delete a student.

 FACULTY API ENDPOINTS (/API/FACULTY)

 FACULTY API ENDPOINTS (/API/FACULTY)

 FACULTY API ENDPOINTS (/API/FACULTY)

 DEPARTMENT API ENDPOINTS (/API/DEPARTMENT)

GET /api/department: Retrieve a list of all departments.

GET /api/department/{id}: Retrieve a single department by their
ID.

POST /api/department: Create a new department.

PUT /api/department/{id}: Update an existing department’s
details.

DELETE /api/department/{id}: Delete a department.

REMAINING ENDPOINTS
@RequestMapping("/api/coordinators")

http://localhost:8080/api/coordinators
@RequestMapping("/api/courses")

http://localhost:8080/api/courses
@RequestMapping("/api/course-enrolments")

http://localhost:8080/api/course-enrolments
@RequestMapping("/api/lecturers")

http://localhost:8080/api/lecturers
@RequestMapping("/api/modules")

http://localhost:8080/api/modules
@RequestMapping("/api/module-enrolments")

http://localhost:8080/api/module-enrolments
@RequestMapping("/api/students")

http://localhost:8080/api/students

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Add Basic HTTP Authentication using JWT and
Redis

WHY REDIS?
In-memory blacklists (using a Set) are not suitable for production
because:

They do not scale across multiple application instances.
Tokens are lost on application restart.
Redis provides a distributed, persistent, and performant solution
to store blacklisted tokens with an automatic expiry (TTL)
matching the token's lifespan.

Prerequisites
Redis server running (local or cloud).
Spring Boot Redis dependency.
Add the necessary dependencies to pom.xml :

ADD DEPENDENCIES TO POM.XML :

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-redis</artifactId>
 </dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
 <dependency>
 <groupId>io.jsonwebtoken</groupId>
 <artifactId>jjwt-api</artifactId>
 <version>0.11.5</version>
 </dependency>

 <dependency>
 <groupId>io.jsonwebtoken</groupId>
 <artifactId>jjwt-impl</artifactId>
 <version>0.11.5</version>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>io.jsonwebtoken</groupId>
 <artifactId>jjwt-jackson</artifactId>
 <version>0.11.5</version>
 <scope>runtime</scope>
 </dependency>

APPLICATION.PROPERTIES

spring.data.redis.host=localhost
spring.data.redis.port=6379
spring.data.redis.password=
spring.data.redis.timeout=60000
jwt.secret=abcdefghijklmnopqrstuvwxyz123456
jwt.expiration-ms=86400000

logging.level.org.springframework.security=DEBUG

INSTALLING REDIS
On Mac :

brew install redis
brew services start redis # to run as a background service

On Linux
sudo apt update
 sudo apt install redis-server
 sudo systemctl enable redis-server --now

IMPORTANT

Spring Boot does not require Redis for JWT
but Redis is often used with JWT in real-world applications to solve some
key limitations of pure stateless JWT authentication.

JWT by Default is Stateless
How JWT works:

The server signs a token and gives it to the client after login.
The client sends the token with every request.
The server verifies the signature and expiration without needing a
database or session storage.

Advantage: No need to store anything on the server → scales easily.

IMPORTANT

Problem: No Central Control (Token Revocation)
If a user logs out or an admin wants to invalidate a token
before it expires, pure JWT cannot handle this easily.

Tokens remain valid until their expiration time because the
server has no record of them

Solution: Redis as a Token Store / Blacklist

SPRING BOOT APPLICATIONS OFTEN INTEGRATE REDIS

Token Blacklisting
When a user logs out, you can store the token’s jti (JWT ID) or hash in
Redis with a TTL (time-to-live).
During every request, check Redis to see if the token is blacklisted.

Refresh Token Management
Store refresh tokens in Redis with an expiration time.
This allows issuing new access tokens securely.

Session-like Features
Store user metadata (roles, permissions) in Redis for quick lookups.
Allows immediate role updates without waiting for JWT expiry.

High Performance
Redis is in-memory, extremely fast, and supports TTL for automatic
token expiration.

USING REDIS INSIGHT

You can use Redis Insight to view keys and other information managed
by the Redis database:
Download it from 👉 https://redis.io/insight/

https://redis.io/insight/

HOW TO USE REDIS INSIGHT

Connect to Your Redis Instance
When you open RedisInsight:
Click Add Redis Database.
Fill in:

Host: localhost (or your server IP/domain if remote)
Port: 6379 (default)
Password: If your Redis instance requires one (e.g., requirepass).

Click Connect.

TYPICAL SPRING BOOT + REDIS JWT FLOW

User Logs In
Spring Boot generates a JWT and stores a refresh token (or token
ID) in Redis.

API Request
User sends JWT in the Authorization header.
Spring Security verifies the signature and checks Redis for
blacklisting or session validity.

Logout
The JWT or its ID is added to Redis as a blacklist entry until it
expires.

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Backend authentication with Redis

STEP 1
First create login table as shown previously.
Then create Login model, LoginRepository and Login /AuthController

LOGIN TABLE

CREATE TABLE login (
 loginId INT AUTO_INCREMENT PRIMARY KEY,
 username VARCHAR(100) NOT NULL UNIQUE,
 passwordHash VARCHAR(255) NOT NULL,
 role ENUM('STUDENT','LECTURER','COORDINATOR','ADMIN') NOT NULL,
 userId INT NOT NULL, -- ID of the actual user
 userType ENUM('STUDENT','LECTURER','COORDINATOR','ADMIN') NOT
NULL,
 createdAt DATETIME DEFAULT CURRENT_TIMESTAMP,
 updatedAt DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP
);

LOGIN TABLE

LOGINCONTROLLER + REPOSITORY

@RestController
@RequestMapping("/api/auth")
@CrossOrigin(origins = "http://localhost:4200")
public class LoginController { }

STEP 2 - AUTH FILES

Create the following files in dto folder
AuthRequest
AuthResponse
RegisterRequest

WHY A CUSTOM USERDETAILSSERVICE IS NEEDED

Spring Security does not know how you store users (MySQL,
PostgreSQL, MongoDB, etc.).

When a login request comes in, the AuthenticationManager will:
Call UserDetailsService.loadUserByUsername(username)
Expect a UserDetails object with:

username
password hash (e.g., bcrypt)
roles/authorities

Without a custom service, Spring cannot fetch your users.

STEP3 : WRITE CUSTOMUSERDETAILSSERVICE

CREATE SECURITY JAVA CLASSES

Create the following files in security folder
JwtFilter
JwtUtil
SecurityConfig
TokenBlackListService

JWT + Redis blacklisting protects your endpoints !!

HOW IT WORKS WITH JWT

Login flow
AuthController calls AuthenticationManager.authenticate().

 Verifies credentials using UserDetailsService
AuthenticationManager delegates to your CustomUserDetailsService.
Password is checked using the PasswordEncoder.

 Hashes & validates passwords (e.g., BCrypt)
On success, you generate a JWT and return it to the client.

Request validation
JwtFilter extracts the username from the token.
Calls CustomUserDetailsService.loadUserByUsername to load
authorities.

Spring Security checks if the user is still valid.

JWT FILES

JwtFilter
Uses UserDetailsService (provided by Spring) to load roles during
requests
 If you have a JwtFilter that checks the token in Redis for every request, it
must skip the login and register endpoints, otherwise Spring Security
blocks requests to /api/auth/login

SecurityConfig
 With this setup:

CSRF is disabled for REST APIs
CORS is allowed for Angular dev server
/api/auth/** endpoints are public
All other endpoints remain secured

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Backend authentication with Redis

STEP 1
First create login table as shown previously.
Then create Login model, LoginRepository and Login /AuthController

STEP 2 - AUTH FILES

Create the following files in dto folder
AuthRequest
AuthResponse
RegisterRequest

WHY A CUSTOM USERDETAILSSERVICE IS NEEDED

Spring Security does not know how you store users (MySQL,
PostgreSQL, MongoDB, etc.).

When a login request comes in, the AuthenticationManager will:
Call UserDetailsService.loadUserByUsername(username)
Expect a UserDetails object with:

username
password hash (e.g., bcrypt)
roles/authorities

Without a custom service, Spring cannot fetch your users.

STEP3 : WRITE CUSTOMUSERDETAILSSERVICE

CREATE SECURITY JAVA CLASSES

Create the following files in security folder
JwtFilter
JwtUtil
SecurityConfig
TokenBlackListService

JWT + Redis blacklisting protects your endpoints !!

HOW IT WORKS WITH JWT

Login flow
AuthController calls AuthenticationManager.authenticate().

 Verifies credentials using UserDetailsService
AuthenticationManager delegates to your CustomUserDetailsService.
Password is checked using the PasswordEncoder.

 Hashes & validates passwords (e.g., BCrypt)
On success, you generate a JWT and return it to the client.

Request validation
JwtFilter extracts the username from the token.
Calls CustomUserDetailsService.loadUserByUsername to load
authorities.

Spring Security checks if the user is still valid.

