N

FULL STACKDEV

spring
boot

Writing business & functional requirements an
project management

— =
"',"

e
=
>

Presented by:

e Confluence
o Purpose: Document all business requirements, functional specs,
wireframes, and meeting notes.
o Actors: Team Leader / Product Owner
o Qutput: Clear reference for developers, QA, and stakeholders.

e Jira
o Purpose: Track project work using Epics » User Stories » Subtasks.
o Actors: Team Leader creates Epics/User Stories; Developers are
assigned subtasks.
o Qutput: Organized, trackable tasks mapped to code/features.

e Cucumber / Gherkin
o Purpose: Define BDD test scenarios based on user stories.
o Actors: QA or Devs write feature files per Epic.
o Qutput: Testable scenarios (acceptance criteria) for automated
testing.

e Development
o Purpose: Implement feature functionality.
o Actors: Developers work on backend, frontend, or full-stack.
o Qutput: Functional code per Jira tasks.

e Unit Testing
o Junit: For testing Java code (backend, services, controllers)
o Mockito: For mocking dependencies in unit tests
o Purpose: Ensure code correctness and independent testing.

e Commit & Git
e Commit messages should reference Jira key, e.g.:
o gitcommit -m "EMP-101: Implement employee registration form’
o Branching strategy:
= main - production
= develop - integration
m feature/<jira-key> - task-specific work

e Pull Request (PR)
o Developers open PRs from feature branches to develop.
o Team members or team leader review code and check automated
tests.

e Merge to Main
o After develop passes CI/CD and QA tests, team leader merges
develop into main for production deployment.

A\

7] 7777 =
- 772 =
LA 7722
4
4

dentify core actors and their responsibilities
o Student

© Program coordinator

o Lecturer, etc

e Write functional & non-functional requirements

NESS REQUIREMENTS - CONFLUENCE

¥ University Application Development University Functional Requirements

[* Shortcuts
@ By Rajeev Khoodeeram EE| 1min |+~ See views (:..; Add a reaction
& Content

Q Search by title

Owner : (CLREEEAGERLEEIE

Status : [DRAFT

| « [E Home

* [E Team Profile
Last Updated : Aug 14, 2025
v [E University Product documentation

S _ _ Labels :
» [E University Business Requirements

« [University Functional Requirements

» [E Non-functional requirements

» [E] Design documents

\

Non-functional requirements

@ By Rajeev Khoodeeram EEI 1Tmin |+~* See views (:_.; Add a react

Owner: (CLEIEEAN el LEIET

Status: [DRAFT
Last Updated: Aug 14, 2025
Labels: university-app, non-functional-requirements

Table of Contents

Performance
Availability & Reliability
Security

AARATARROANN

Usability

/// _—~TRACK PROJECT WORK - JIRA (1)

77755722

/
1772

775577

‘laz;é;’,l%gﬁ/

e Works by organizing the whole project mainly as:

o Category
m Projects
. i i Add New Space Category
e Epics < Jira admin settings vame |
Description |
Switch settings
Add /
® Usel’ StO”eS o Spaces v
/,
/
/)
e Subtasks Manage spaces //
: 7
Space categories ///’/Z/
Trash /4%//4;
ST/
Archive .. //%/Zﬁﬁ”’
7]

e Jira Space/ Project: STUDENT

e Epic 1: Student Registration & Authentication
o Purpose: Onboard students and allow them to access the system.

e User Stories under this Epic:
o STUDENT-1011: Student can submit registration form with
personal details.
o STUDENT-1012: Student can log in and check registration status
(Pending, Approved, Rejected).
o STUDENT-1013: Student receives confirmation email after
registration.

e Epic1l - Student Features
o User Story 1. Student Self-Registration
o Feature: Student Self-Registration - gherkin
© Scenario: Successful registration
= Given | am on the student registration page
= When | enter valid personal details
= And submit the registration form
= Then | should see a confirmation message
= And my registration status should be "Pending Review"
o Scenario: Registration with missing fields
= Given | am on the student registration page
= When | leave required fields blank
= And submit the form
= Then | should see validation errors for each missing-field

e Epic1 - Student Features
o User Story 2: Status Check
o gherkin

o Feature: Student Registration Status Check
m Scenario: View registration status
= Given | am a logged-in student
= \When | navigate to the status page
= Then | should see my registration status as either "Pending
Review" or “Approved”

e

N

FULL STACKDEV

spring
boot

Building Entity Relationships

e Developer defines or updates entities in Java.

e Run Hibernate locally (application-dev.properties !!) with ddl-
auto=create to test.

e Generate the SQL schema from Hibernate (e.g., via SchemaExport).
e Pass SQL to the DBA for review and modification.
e Apply via a migration tool (Flyway/Liquibase).

e Run app in production (USE OF application-prod.properties !!) with
ddl-auto=validate.

Coordinator
o A coordinator manages a course and belongs to a department

Course

o A course belongs to a department (a department has many courses !)
Department

o A departmentis found in a faculty and has a head who is a lecturer
Faculty

o A faculty has a dean who is a lecturer and it has many departments
Lecturer

o A lecturer belongs to a department
Module

o A module belongs to a course and has one lecturer assigned to it
ModuleEnrolment

o Students enrolled in modules
CourseEnrolment

o Students enrolled in one and only one course
Student

e Coordinator

o A coordinator manages a course and belongs to a department

Column Name

e Course

o A course belongs to a department (a department has many courses !)

coordinatorld
coordinatorEmail
coordinatorName
courseld
departmentl|d

Column Name

courseld
courseName
courseDuration

courselLevel
departmentid
courseAbbrev

ENTITIES

| #| Data Type

1 bigint
2 varchar(255)
3 varchar(255)
4 bigint
5 bigint

| #| Data Type
1 bigint
2 varchar(255)
3 int
4 varchar(255)
5 bigint
6 varchar(255)

ENTITIES
¢ Department

o A departmentis found in a faculty and has a head who is a lecturer

Column Name | #| Data Type

departmentid 1 bigint
departmentName 2 varchar(255)
departmentCoade 3 varchar(255)
facultyld 4 bigint
lecturerld 5 bigint

e Faculty
o A faculty has a dean who is a lecturer and it has many departments

olumn Name | #| Data Type

facultyld 1 bigint
facultyname 2 varchar(255)
facultycode 3 varchar(255)

facultyPhone 4 varchar(255)
facultyDean 5 bigint
facultyEmail 6 varchar(255)
facultyDescription 7 longtext

ENTITIES

e Lecturer
O A leCtu rer belongs to a department ICQlumn Name | #|Data Type

lecturerld 1 bigint
lecturerFirstName 2 varchar(255)
lecturerLastName 3 varchar(255)
lecturerEmail 4 varchar(255)
departmentid 5 bigint
lecturerHireDate 6 datetime
lecturerTitle 7 varchar(255)

e Module

o A module belongs to a course and has one lecturer assigned to it

Column Name | #| Data Type

moduleld 1 bigint
moduleName 2 varchar(255)
moduleCode 3 varchar(255)

moduleCredits 4 int
courseld 5 bigint
lecturerld 6 bigint
moduleSemester 7 int

ENTITIES

e ModuleEnrolment
o Students enrolled in modules |

Column Name | #| Data Type

enrolmentid 1 bigint
studentid 2 int

moduleld 3 bigint
enrolmentDate 4 datetime
grade 5 varchar(255)
status 6 varchar(255)

e CourseEnrolment
o Students enrolled in one and only one course

I
Column Name | #| Data Type

courseEnrolld 1 bigint
studentld 2 int

courseld 3 bigint
courseEnrolDate 4 datetime(6)
courseEnrolStatus 5 varchar(255)
courseEnrolGraduatior 6 varchar(255)

ENTITIES

e Student

Column Name ‘ #‘ Data Type

student_id 1 int

student_firstname 2 varchar(255)
student_lastname r(255)
student_dob 4 varchar(255)
student_gender 5 varchar(255)

student_address / varchar(255)
student_status 8 varchar(255)
student_email r(255)
enrolment_date 10 varchar(255)

(
(
(
(
student_phone (255)
(
(
(
(
student_city 11 varchar(100)

e There are many types of relationships:
© one-to-one
m 3 coordinator can oversee a course, and a course has
only one coordinator assigned to it

© one-to-many (many-to-one)
m one student can unenroll in only one course and a
course has many students enrolled in it

© many-to-many
m 3 student can subscribe to many clubs
= a club has many students as members

e Type: One-to-One

e Description: One Program Coordinator can oversee only one Course, and
each Course is managed by only one Program Coordinator.

e Implementation: Coordinator.courseld is a Foreign Key referencing
Course.courseld (here primary key).

d0neToOne
dJsonBackReference

aJoinColumn(name = "courseld", nullable = false, unique = true) Sl

coordinator

private Coordinator coordinator; m

coordinatorid
courseName

coordinatorEmail
coordinatorName

courseDuration

@OneToOne courselLevel

@JoinColumn(name = "courseld", nullable = false, unique = true)
private Course course;

courseld
departmentld

departmentl|d
courseAbbrev

e Type: Many-to-One

e Description: One Department belongs to only one Faculty and one Faculty

can have many Departments.

e Implementation: Department.facultyld is a Foreign Key referencing

Faculty.facultyld (here primary key).

@anyToOne

@JoinColumn(name = "facultyId", nullable = false)
@JsonBackReference

private Faculty faculty;

@neToMany (mappedBy = "faculty", cascade = CascadeType.ALL, orphanRemoval = true
orivate List<Department> departments = new ArrayList<>();

department
departmentid

departmentName
departmentCode
facultyld
lecturerld

faculty
facultyld

facultyname
facultycode
facultyPhone
facultyDean
facultyEmail
facultyDescription

s [ype: One-to-Many

e Description: One Department has many lecturers and one lecturer belongs to
only one Department.

e Implementation: Department.lecturerld is a Foreign Key referencing
Lecturer.lecturerld (here primary key).
e But, a department also has a head (who is a lecturer) --- complication!

@0neToMany (mappedBy = "department", cascade = CascadeType.ALL, orphanRemoval = true) lecturer
@JsonManagedReference
private List<Lecturer> lecturers = new ArrayList<>();

department

lecturerid departmentid

lecturerFirstName departmentName

lecturerLastName departmentCode

lecturerEmail facultyld

@OneToOne departmentld lecturerld

@JoinColumn(name = "lecturerId", unique = true)
private Lecturer headOfDepartment;

lecturerHireDate
lecturerTitle

@anyToOne

@JoinColumn(name = "departmentId", nullable = false)
@JsonBackReference

private Department department;

e

O

FULL STACKDEV

spring
boot

Creating the database - mySQL

/ Y4
=
7777

e

See ==>2025-08-22-UniversityMySQLDB

//, _~FUllL DATABASE OF UNVERSITYAPP

e L

—

N

FULL STACKDEV

spring
boot

Designing backend API for remaining entities

e —
——
g

o @CrossOrigin(origins = "http://localhost:5176") - in controller!

e Create new directory inside your git repo - here it is frontend folder
Inside HumanResourceApp
o Navigate inside this directory
o Run: >>npm create vue@latest frontend
e Make sure you install extensions for Vue in Visual Studio Code
o Check all options
o Navigate into your new project directory (here it is frontend) and
install dependencies
o >>npm install
e Run the development server to verity everything works
o >>npm run dev

¢ Open frontend folder in VS Code
o >>npm install

e Remember v e
o Index.html calls —> main.ts which calls —> App.vue

s vite-env.d.ts

.gitignore

{} components.json

<7 index.html

e Run npm install vue-router (will create folder router and add index.js (see
github))
o This provides all the routes for your app - if not generated then you create
It manually !

e I[mportant to note here - We will have two interfaces :
© one Is the website the public views
o the other one is the admin view for managing the database

We will modify the main.ts to cater for routing
main.ts

import { createApp } from "vue';
import App from "./App.vue";

import "/assets/index.css";

import router from "./router/index.js";

const app = createApp(App);
app.use(router);
app.mount("#app");

main.ts has been modified to take routing into consideration

We will modify the main.ts to cater for routing
main.ts

import { createApp } from "vue';
import App from "./App.vue";

import "/assets/index.css";

import router from "./router/index.js";

const app = createApp(App);
app.use(router);
app.mount("#app");

main.ts has been modified to take routing into consideration

Centralized ts or utils files (it is in the lib folder)
o Create a utils folder in src
o Create your file (ex here formatDate.ts) or add your
function in the same utils.ts

Formatting date from database in Due
o >>npm install dayjs

iImport dayjs from "dayjs";

export function formatDate(dateStr: string): string {
return dayjs(dateStr).format("DD-MM-YYYY");

}

e

O

FULL STACKDEV

spring
boot

Creating endpoints for API Testing

e This section outlines the REST APl endpoints and the underlying
business logic necessary to power the frontend features.

e The APl will use standard REST principles (we use postman)
o GET

http://localhost:8080/api/faculty v http://localhost:8080/api/faculty/2

http://localhost:8082/api/faculty

http://localhost:8080/api/faculty/3

o DELETE

DELETE v http://localhost:8080/api/faculty/3

e GET /api/faculty: Retrieve a list of all students (with optional
filtering/pagination parameters).

e GET /api/faculty/{id}: Retrieve a single student by their ID.
e POST /api/faculty: Create a new student.
e PUT /api/faculty/{id}. Update an existing student's details.

e DELETE /api/faculty/{id}: Delete a student.

Params

Auth Type

Auth

JWT Bearer

The authorization

header will be

Body

Y

{} JSON ~

1

[

Get all faculties

http://localhost:8080/api/faculty

Headers (6) Body Scripts Settings

Y oRAUvVallLTu vwilniyuirauwig

Postman auto-generates default values for some of these fields unless

a value is specified.

Request header prefix (i)

-

200 OK 58 ms 23.11 KB

[> Preview [Visualize

"facultyId": 2,

"facultyName": "Business and Management",

"facultyCode": "BM",

"facultyPhone": "901354645",

"facultyEmail":

"facultyDean": {
"lecturerId": 2,

‘rajkhoo@gmail.com"”,

"lecturerFirstName": "Rajeevah",
"lecturerLastName":
"lecturerEmail": "rajkhoooo@gmail.com"
"lecturerHireDate":

"lecturexTitle": "AP"

'Khoodeeramah",

L

= || = @]

'2025-04-12T04:00:00.000+00:0C

@ Save Response ece

0 &

Params

Auth

Get a faculty by Id

http://localhost:8080/api/faculty/2

Headers (6) Body Scripts Settings

Query Params

Key

Body {D

{} JSON v

i

Description

200 OK 67 ms - 5.81 KB

> Preview [N Visualize v

"facultyId": 2,
"facultyName": "Business and Management",
"facultyCode": "BM",
"facultyPhone": "901354645",
"facultyEmail": "rajkhoo@gmail.com",
"facultyDean": {
"lecturerId": 2,
"lecturerFirstName": "Rajeevah",
"lecturerLastName":
"lecturerEmail":

"Khoodeexramah",
"rajkhoooo@gmail.com",
"lecturerHireDate": "2025-04-12T04:00:00.000+00
"lecturexTitle”: "AP"

= Q

Bulk Edit

0

@ [e2] Save Response oeo

&

Update a faculty

http://localhost:8080/api/faculty/3

Params Auth Headers (8) Body Scripts Settings

25 Schema

"facultyCode" : "ICT",
"facultyName": "Information and Communication Technology”

Params

Create a faculty

http://localhost:8082/api/faculty

Auth Headers (8) Body Scripts Settings

"facultyName":
"facultyCode":

"Languages and Arts’,
1 LAAII

Response

¢V History v

—':'—
o Schema

DELETE

Params Auth

Query Params

Key

Delete a Faculty

http://localhost:8080/api/faculty/3

Headers (6)

Body

Scripts

Settings

Description

Bulk Edit

e GET /api/department: Retrieve a list of all departments.

e GET /api/department/{id}: Retrieve a single department by their
ID.

e POST /api/department: Create a new department.

e PUT /api/department/{id}: Update an existing department’s
detalils.

e DELETE /api/department/{id}: Delete a department.

e @RequestMapping("/api/coordinators")
o http://localhost:8080/api/coordinators
e @RequestMapping("/api/courses")
o http://localhost:8080/api/courses
e @RequestMapping("/api/course-enrolments’)
o http://localhost:8080/api/course-enrolments
e @RequestMapping("/api/lecturers’)
o http://localhost:8080/api/lecturers
e @RequestMapping("/api/modules")
o http://localhost:8080/api/modules
e @RequestMapping("/api/module-enrolments’)
o http://localhost:8080/api/module-enrolments
e @RequestMapping("/api/students")
o http://localhost:8080/api/students

O

FULL STACKDEV

spring
boot

q Add Basic HTTP Authentication using JWT and
Redis

* In-memory blacklists (using a Set) are not suitable for production
because:
o They do not scale across multiple application instances.
o Tokens are lost on application restart.
o Redis provides a distributed, persistent, and performant solution
to store blacklisted tokens with an automatic expiry (TTL)
matching the token's lifespan.

e Prerequisites
o Redis server running (local or cloud).
o Spring Boot Redis dependency.
o Add the necessary dependencies to pom.xml:

e <dependency>

<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-data-redis</artifactid>
</dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-security</artifactld>
</dependency>
<dependency>
<groupld>io.jsonwebtoken</groupld>
<artifactld>jjwt-api</artifactid>
<version>0.11.5</version>
</dependency>

<dependency>

<groupld>io.jsonwebtoken</groupld>
<artifactld>jjwt-impl</artifactld>
<version>0.11.5</version>
<scope>runtime</scope>

</dependency>

<dependency>
<groupld>io.jsonwebtoken</groupld>
<artifactld>jjwt-jackson</artifactid>
<version>0.11.5</version>
<scope>runtime</scope>

</dependency>

spring.data.redis.host=localhost
spring.data.redis.port=6379
spring.data.redis.password=
spring.data.redis.timeout=60000
jwt.secret=abcdefghijklmnopqgrstuvwxyz123456
jwt.expiration-ms=86400000

logging.level.org.springframework.security=DEBUG

e On Mac:
o brew install redis
o pbrew services start redis # to run as a background service

(base) rajeev@Rajeev-Khoodeeram ~ % redis-éli PiNG
PONG

(base) rajeev@Rajeev-Khoodeeram ~ % I

e On Linux
o sudo apt update
o sudo apt install redis-server
o sudo systemctl enable redis-server --now

e Spring Boot does not require Redis for JWT
o but Redis is often used with JWT in real-world applications to solve some
key limitations of pure stateless JWT authentication.

e JWT by Default is Stateless
e How JWT works:
o The server signs a token and gives it to the client after login.
o The client sends the token with every request.
o The server verifies the signature and expiration without needing a
database or session storage.

e Advantage: No need to store anything on the server - scales easily.

e Problem: No Central Control (Token Revocation)
o If a user logs out or an admin wants to invalidate a token
before it expires, pure JWT cannot handle this easily.

o Tokens remain valid until their expiration time because the
server has no record of them

e Solution: Redis as a Token Store / Blacklist

e Token Blacklisting
o When a user logs out, you can store the token’s jti (JWT ID) or hash in
Redis with a TTL (time-to-live).
o During every request, check Redis to see if the token is blacklisted.
e Refresh Token Management
o Store refresh tokens in Redis with an expiration time.
o This allows issuing new access tokens securely.
e Session-like Features
o Store user metadata (roles, permissions) in Redis for quick lookups.
o Allows immediate role updates without waiting for JWT expiry.
e High Performance
o Redis Is in-memory, extremely fast, and supports TTL for automatic
token expiration.

e You can use Redis Insight to view keys and other information managed
by the Redis database:
e Download it from = https://redis.io/insight/

O

From terminal (notice there are TWO) :

(base) rajeev@Rajeev-Khoodeeram ~ % redis-cli
127.0.0.1:6379> select ©

127.0.0.1:6379>

127.0.0.1:6379> keys *

Iy
"ijwt:blacklist:eyJhbGciOiJIUzIINiJ9.eyJzdWIiOiJyYWpraG9vNzdAb3VO
bGOvay5jb20iLClyb2x1cyI6W3siYXVOaG9yaXR5IjoiUk9MRVI9zdHVKZW50In1ld
LCJpYXQiOjE3NTg3NjA30DcsImV4A4cCI6MTc10DgONzE4AN30.n91I5780uWnxUMURa
QgdCAcPvvwkmjQz1F8DI8BNgKIVs"

2)
“iwt:blacklist:eyJhbGciOiJIUzIINiJ9.eyJzdWIi0iJyYWpraGO9vNzdAb3Ve
bGOvay5jb20iLCJyb2x1cyI6W3siYXVOaG9yaXR5Ijoi1Uk9MRVIzdHVKZWS50In1ld
LCJpYXQiOjE3NTg3NTcyOTgsImV4cCI6MTc10DgOMzY50HO .nMd9-5nhpScp8T10
zASHT6JZdmOdHRSODSCWT kb6pe8"

https://redis.io/insight/

Connect to Your Redis Instance
When you open Redislnsight:
Click Add Redis Database.
Fill in:
o Host: localhost (or your server IP/domain if remote)
o Port: 6379 (default)
o Password: If your Redis instance requires one (e.g., requirepass).
Click Connect.

127.0.0.1:6379 - Browser

Databases / 127.0.01:6379 v db0 & (i) % 016 % @ 0 ' L2 2 @ 4

—

@ & | AllKey Types v *jwt*

=)

Results: 2. Scanned 2 / 2

STRING jwt:blacklist:eyJhbGciOiJIUzITNiJ9.ey)zdWIiOiJyYWpraG9vNzdAb3VObG9vay...

STRING jwt:blacklist:eyJhbGciOiJIUzITNi)9.ey)zdWIiOilyYWpraG9vNzdAb3VObG9vay...

e User Logs In
o Spring Boot generates a JWT and stores a refresh token (or token
ID) in Redis.

e APl Request
o User sends JWT in the Authorization header.
o Spring Security verifies the signature and checks Redis for
blacklisting or session validity.

e Logout
o The JWT or its ID is added to Redis as a blacklist entry until it
expires.

e

O

FULL STACKDEV

spring
boot

Backend authentication with Redis

o First create login table as shown previously.
e Then create Login model, LoginRepository and Login /AuthController

eEntity -—

@Table(name = "login"') I
public class Login {

Column Name | #| Data Type

loginld 1 bigint
username 2 varchar(255)
passwordHash 3 varchar(255)
fo][= 4 varchar(255)
userld 5 bigint
userType 6 varchar(255)
createdAt 7 timestamp
updatedAt 8 datetime

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)

@Column(nullable = false, unique = true)
private String username;

@Column(nullable = false)
private String passwordHash;

@Column(nullable = false)
private String role;

@Column(nullable = false, unique
private int userld;

e CREATE TABLE login (

e loginld INT AUTO_INCREMENT PRIMARY KEY,

e username VARCHAR(100) NOT NULL UNIQUE,

e passwordHash VARCHAR(255) NOT NULL,

e role ENUM('STUDENT"LECTURER,COORDINATOR',ADMIN') NOT NULL,

e userldINT NOT NULL, -- 1D of the actual user

e userType ENUM('STUDENT'LECTURERCOORDINATORADMIN') NOT
NULL,

e createdAt DATETIME DEFAULT CURRENT_TIMESTAMP,

e updatedAt DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP

o)’

Column Name

loginid
username
passwordHash
role

userld
userType
createdAt
updatedAt

| #| Data Type

1 bigint

2 varchar(255)
3 varchar(255)
4 varchar(255)
5 bigint

6 varchar(255)
7 timestamp

8 datetime

2
]
4
5
6
7
8
9

rajkhoo77@outlook.com
admin.uot@gmail.com
dev@outlook.com
olivia@yahoo.com
jagpatibabu@yahoo.com
sdsd@yahoo.com
asdsyahoo.com

test@admin.com
lect@osas.com

$2a$10%0qgFr.YSzChyTFPrQOr9/o0OyNrJpSdhOKeuO4tkV15 student
$2a$10$nyueFazbim8mcSriBpjiLeP4xI93cU8ZnSLZkGXD7 Student
$2a$10$6/HWdq.ckZ10hr4tA2b5f.nprDIJTjtCavnVd8Sn.nkl student
$2a$10$ZdsyQ1YoAfD.WsVPzcWpV.bGZPonFKY01yrqww2v admin
$2a$10%$.rr9Ldmk310zMHcrB6ggguzOZr5LjPLUcZ6a4kNjh admin
$2a$10$QJC3HeFMVuHc5f9z9F0GZ.K4EjVsDPsDmM3rAQO.C admin
$2a$10$Exgl2700tZKA4cYVNOVQzODAMVPtKnMzeSO1TV(admin
$2a$10%$2j9pgkxk8D/MirduMKOWz.tTDz1PrRCgZrgWQO.hAE admin
$2a$10%10i4pIlK5F3mpSbw5wGkE1eBJimuKsbj3nGJtxMz5F admin
$2a$10$87XFOpu.bljiQ1IGKmRXAAOSqv5SoypZVvzvyF/3aF lecturer

e @RestController

e @RequestMapping("/api/auth")

e @CrossOrigin(origins = "http://localhost:4200")

e public class LoginController{ }

Optional<Login> findByUsername(String username);

Login findByUserId(int userId);

@POStMapping ("/ FegiSte r'') Login findByUserType(String userType);
public ResponseEntity<?> register(@RequestBody RegisterRequest req)

boolean existsByUsername(String username);

boolean existsByUserId(int userId);

@PostMapping("/login")
public ResponseEntity<?> login(@RequestBody AuthRequest req) {

@PostMapping("/logout")
public ResponseEntity<?> logout(@RequestHeader("Authorization") String authHeader) {

e Create the following files in dto folder
o AuthRequest
o AuthResponse
o RegisterRequest

v [src/main/java
> {} ca.cloudace.backend
> {} ca.cloudace.backend.controller

public record AuthRequest(String username, String password) {
v {} ca.cloudace.backend.dto }

43 AuthRequest
public record AuthResponse(String token, String tokenType, String fullName, String role) {

44 AuthResponse

%3 REQiStEI’REQUESt public record RegisterRequest(String username, String password, String role) {
+

e Spring Security does not know how you store users (MySQL,
PostgreSQL, MongoDB, etc.).

e When a login request comes in, the AuthenticationManager will:
o Call UserDetailsService.loadUserByUsername(username)
o Expect a UserDetails object with:
m ysername
= password hash (e.g., bcrypt)
= roles/authorities

e Without a custom service, Spring cannot fetch your users,

@Service
@Primary
public class CustomUserDetailsService implements UserDetailsService {
@Autowilred
private LoginRepository loginRepository;
Qodo Gen: Test this method | Qodo Gen: Test this method | Qodo Gen: Test this method
@Override
public UserDetails loadUserByUsername(String username)
throws

Optional<Login> loginOpt = loginRepository.findByUsername(username);

Login user = loginOpt.orElseThrow(() —> new UsernameNotFoundException(msg:"User not found")
System.out.println("UserDetails password: " + user.getPasswordHash());
System.out.println("Raw password: " + username);

return User.builder

.username(user.getUsername()
.password(user.getPasswordHash()
.roles(user.getRole()) // e.g., "USER
build();

<

e Create the following files in security folder
o JwtFilter
o JwtUtil
o SecurityConfig
o TokenBlackListService

v {} ca.cloudace.backend.security
%2 CustomUserDetailsService + M
%2 JwtFilter

%2 JwtUtil
44 SecurityConfig
%2 TokenBlackListService

o JWT + Redis blacklisting protects your endpoints !!

Login flow
AuthController calls AuthenticationManager.authenticate().

o Verifies credentials using UserDetailsService
AuthenticationManager delegates to your CustomUserDetailsService.
Password is checked using the PasswordEncoder.

o Hashes & validates passwords (e.g., BCrypt)

On success, you generate a JWT and return it to the client.

Request validation
o JwtFilter extracts the username from the token.
o Calls CustomUserDetailsService.loadUserByUsername to load
authorities.
Spring Security checks if the user is still valid.

e JwtFilter
o Uses UserDetailsService (provided by Spring) to load roles during
requests
o If you have a JwtFilter that checks the token in Redis for every request, it
must skip the login and register endpoints, otherwise Spring Security
blocks requests to /api/auth/login

e SecurityConfig
With this setup:
m CSRF is disabled for REST APIs
= CORS is allowed for Angular dev server
m /api/auth/** endpoints are public
= All other endpoints remain secured

e

O

FULL STACKDEV

spring
boot

Backend authentication with Redis

o First create login table as shown previously.
e Then create Login model, LoginRepository and Login /AuthController

eEntity -—

@Table(name = "login"') I
public class Login {

Column Name | #| Data Type

loginld 1 bigint
username 2 varchar(255)
passwordHash 3 varchar(255)
fo][= 4 varchar(255)
userld 5 bigint
userType 6 varchar(255)
createdAt 7 timestamp
updatedAt 8 datetime

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)

@Column(nullable = false, unique = true)
private String username;

@Column(nullable = false)
private String passwordHash;

@Column(nullable = false)
private String role;

@Column(nullable = false, unique
private int userld;

e Create the following files in dto folder
o AuthRequest
o AuthResponse
o RegisterRequest

v [src/main/java
> {} ca.cloudace.backend
> {} ca.cloudace.backend.controller

public record AuthRequest(String username, String password) {
v {} ca.cloudace.backend.dto }

43 AuthRequest
public record AuthResponse(String token, String tokenType, String fullName, String role) {

44 AuthResponse

%3 REQiStEI’REQUESt public record RegisterRequest(String username, String password, String role) {
+

e Spring Security does not know how you store users (MySQL,
PostgreSQL, MongoDB, etc.).

e When a login request comes in, the AuthenticationManager will:
o Call UserDetailsService.loadUserByUsername(username)
o Expect a UserDetails object with:
m ysername
= password hash (e.g., bcrypt)
= roles/authorities

e Without a custom service, Spring cannot fetch your users,

@Service
@Primary
public class CustomUserDetailsService implements UserDetailsService {
@Autowilred
private LoginRepository loginRepository;
Qodo Gen: Test this method | Qodo Gen: Test this method | Qodo Gen: Test this method
@Override
public UserDetails loadUserByUsername(String username)
throws

Optional<Login> loginOpt = loginRepository.findByUsername(username);

Login user = loginOpt.orElseThrow(() —> new UsernameNotFoundException(msg:"User not found")
System.out.println("UserDetails password: " + user.getPasswordHash());
System.out.println("Raw password: " + username);

return User.builder

.username(user.getUsername()
.password(user.getPasswordHash()
.roles(user.getRole()) // e.g., "USER
build();

<

e Create the following files in security folder
o JwtFilter
o JwtUtil
o SecurityConfig
o TokenBlackListService

v {} ca.cloudace.backend.security
%2 CustomUserDetailsService + M
%2 JwtFilter

%2 JwtUtil
44 SecurityConfig
%2 TokenBlackListService

o JWT + Redis blacklisting protects your endpoints !!

Login flow
AuthController calls AuthenticationManager.authenticate().

o Verifies credentials using UserDetailsService
AuthenticationManager delegates to your CustomUserDetailsService.
Password is checked using the PasswordEncoder.

o Hashes & validates passwords (e.g., BCrypt)

On success, you generate a JWT and return it to the client.

Request validation
o JwtFilter extracts the username from the token.
o Calls CustomUserDetailsService.loadUserByUsername to load
authorities.
Spring Security checks if the user is still valid.

