O

FULL STACKDEV

spring
boot

Team Leader - Build the Docker Image and Run
Locally

S =

e —
=
Ny

Presented by:

7 TEAM LEADER

===

LA e

1172

i

%%/ & Localrepo.
7,

7

Team Leader

Local repo. .
ml . @) >, @
[> GitHub docker

Remote repo.

Developer #1

Local repo.

-

Developer #2

The Team Leader:
e |nitialises the project
e Put on GitHub
e Put on DockerHub

e A Dockerfile contains instructions to build a Docker image.
o defining a self-contained, reproducible environment for our
Spring Boot application.

e There are two ways we can write the Dockerfile:
o Single stage : You write a single sequence of instructions
= the image tends to be bigger so it is less efficient.

o Multi stage : You define separate stages, typically one for
building your app and another for the final runtime
environment.

= More complex but powerful.

Source
Code

Source
Code

maven

e
=

JAR

builder

runner

src/main/fjava
src/main/resources

src/test/java

target/generated-sources/annotati...

target/generated-test-sources/ftest...
JRE System Library [JavaSE-17]

Maven Dependencies

target
Dockerfile
HELP.md
Jenkinsfile
mvnw
mvnw.cmd

pom.xml

FROM openjdk:17-jdk—slim

EXPOSE 8080
C(MD ["java", "-jar", "app.jar"]

e Here everything — building and running — happens in the
same image, making it larger and less efficient, since all
build tools (like Maven) remain in the final image.

e \What happens during docker build:

e Stage 1 (builder)
o Maven and other heavy build dependencies are installed.
o The project is compiled, and a .jar file is generated.

e Stage 2 (runner)
o Starts from a much smaller image (openjdk:17-jre-slim).
o Only copies the compiled JAR from the builder stage (COPY --
from=builder).
o No build tools like Maven are included.

FROM maven:3.8.7-openjdk-17-slim AS builder
WORKDIR /app

Copy the Maven project file first to leverage Docker cache
COPY pom.xml.

Download dependencies to cache them
RUN mvn dependency:go-offline

Copy the rest of the source code
COPY src ./src

Package the application into a JAR file
RUN mvn clean package -DskipTests

e The first stage is responsible for compiling our Java code and creating the
final executable .jar file. It's like a temporary workshop where we get all the
tools we need to create our product.

o FROM: a base image that has all the necessary tools: a Java
Development Kit (JDK) and Maven.

o WORKDIR: set the working directory inside the container, where all
subsequent commands will run.

o COPY: We copy the pom.xml first. This is a crucial optimization.

o RUN: We download the project dependencies using mvn
dependency.go-offline. This caches them.

o COPY: We copy the rest of the source code.

o RUN: We run the final Maven command to package the application into
a .jar file.

FROM openjdk:17-jre-slim AS runner

WORKDIR /app

t Copy the JAR file from the builder stage
COPY --from=Dbuilder /app/target/*.jar app.jar

t Expose the port the Spring Boot application runs on
EXPOSE 8080

The command to run the application
CMD [lljavall’ ll_jarll’ llapp.jarll]

e This is the final, production-ready stage. Its goal is to be as small and
secure as possible.

e FROM: A base image that only contains the JRE, not the full JDK.

e WORKDIR: We set the working directory for our final application.

e COPY: We copy the .jar file that was built in the builder stage.

e EXPOSE: We inform Docker that our application listens on port 8080.

e CMD: We specify the command that will be executed when the container
starts.

Create the Spring boot project

Run the app without docker

Initialize the local repo.

Write the Dockerfile

Build using maven

Build and test the app with docker
Create an online repo. (Show on Github)

Use git to commit the Spring boot project to the main branch.ef the remote
repo.

ﬂ http://localhost:8080/products

http://localhost:8080/products
Params Authorization eaders (6) Body ripts Settings

HTTP version | NEW

t the HTTP version to use for sending the request.

Enable SSL certificate verification

st Verification failures will result in the request

< C O D localhost

JSON Raw Data Headers
ot ifn [e [
CIEEMIETE SET e P e _ Save Copy Collapse All Expand All Filter JSON
"description": "This is a sample product description”,
"price": 19.99' 1

id: 1

”"C|”: A‘,
”ivr”f‘“*”*f o name: “"Sample Product”

description: "This is a sample product description"

price: 19.99

id: p.

name: “"Another Product"

description: "This is another product description"
price: 29.99

Make sure, you have created the docker repo.
Build the container:
o sudo docker build -t rajeevmauritius/sbdockergit:vl.
Commit to repo.
o docker push rajeevmauritius/sbdockergit:vl
If needs to login, then

Actions secrets and variables

Secrets and variables allow you to manage reusable configuration data. Secrets are encrypted and are used for

docker - I _ NPT ; : r
sensitive data. Learn more about encrypted ts. Variables are shown as plain text and are used for non-sensitive
data,

O o C e r O I n fzoen SR e Anyone with collaborator access to this repository can use these secrets and variables for actions. They are not
passed to workflows that are triggered by a pull request from a fork.

RK .F':aj%!ev. thogeeram

Create access token Variables

[] []
V I e W t | l e ‘ O I I t a I I l e r Home A personal access token is similar to a password except you can have many tokens and . .
Environment variables

revoke access to each one at any time.

Hub

Build Cloud e e R
O d 0 C ke r p S - a Shiingboctenze Manage environment variables

Scout Copy access token
Testcontainers Cloud (3 A Use this token as a password when you sign in from the Docker CL

Docker Desktop Make sure you copy your personal access token now. Your person: Repository variables New repository variable
s a displayed once. It isn't stored and can't be retrieved later.
Name =T
Settings
Access token description ©) DOCKER_PASSWORD 3 minutes age
Account information Vrite youto pushi springboot-2025

Email) DOCKER_USERNAME rajeevmauritius Fr—
| M
Generate Expires on

Password Never

Access permissions
Read & Write

To use the access token from your Docker CLI client:
1. Run

n -u rajeevmauritius

2. At the password prompt, enter the personal access token.

O

FULL STACKDEV

spring
boot

Developer #1 - Working on Windows and uses Git

e —
——
g

/] 7 777222

) DEVELOPER#]

’ Local repo.

Local repo. mEEEn
1 O , @

W > GitHub docker

Remote repo.
Developer #1
Local repo. /

Developer #2

==

—
==

—

e |nstall all the required tools
o jdk 21/24
o VS Code
o git

e Make sure Dev#1 has a git account
o Will be asked to verity his credential and commit to the git
repository

Create a folder where you want to put the project
o cd In that folder

git clone --branch feature/initial-project --single-branch

https://github.com/rajeev-khoodeeram/JavaFullStack.git
o (where initial-project should be MAIN in reality)

Do a clean maven if any problem with Java (we are using JDK 24
here)

o \mvnw clean install

Run the spring boot project and checks if the /products

https://github.com/rajeev-khoodeeram/JavaFullStack.git

e Dev#1 works in this own branch /feature and commits
o git checkout -b feature/product-controller-updated-getProductbyld

e Changes the ProductController
o add a method to retrieve a product by id (getProduct)

e Now the only change is this ProductController file

@GetMapping("/products/{id}")

public ResponseEntity<Product> getProduct(@PathVariable int id) {
Product product;
product = productService.getProductById(id);

if (product.getName().length() == 0
return ResponseEntity.badRequest().build();

return new ResponseEntity<>(product, HttpStatus.OK);
s

¢ In VS Code; open terminal to execute the following :

o gitadd.

e # will be required to use git (applied only when using for the first time)
<hoodeeram.rajeev@gmail.com”

o git config --globa
o git config --globa

Luser.email "

user.name "

Developer

] 1"

e ditcommit-m "getProductByld added by Developer #1"

e git push https://github.com/rajeev-khoodeeram/JavaFullStack.git
feature/product- controller-updated-getProductbyld
o if developer 1 is already connected to github...and Team leader has
allowed him as collaborator

e Now on github, Developer

#1 will create a pull request and-add a message

mailto:khoodeeram.rajeev@gmail.com
http://user.name/
https://github.com/rajeev-khoodeeram/JavaFullStack.git

e Dev #1l
o Creates a feature branch
o Commits code
o Opens a Pull Request (PR) into main (or develop in Git Flow)
e Team Leader
o Reviews the code (comments, requests changes if needed)
o Approves the PR once it meets quality standards
e Merging
o Option A (common in small/medium teams):
= The team leader clicks “Merge” after approval
o Option B (common in larger or more autonomous teams):
= The PR author merges it themselves after approval (if branch
protection rules allow it).

e

O

FULL STACKDEV

spring
boot

q Dev#2 : Working on Ubuntu (docker)

’ Local repo.

4

Team Leader

) =~ DEVELOPER #2

Local repo.

mm . O
| > GitHub

Remote repo.

docker

Local repo.

Developer #

==

—
==

—

e Step 1: Install Git and Docker (if not already installed)
o sudo apt update
o sudo apt install git docker.io -y

e Then start and enable Docker:
o sudo systemctl start docker
o sudo systemctl enable docker

e Give current user permission to run Docker without sudo:
o sudo usermod -aG docker $USER
o newgrp docker

Step 2: Clone the GitHub Repository

Create a folder in which the project will be stored
cd inside this folder
o gitinit.
o git clone --branch feature/initial-project --single-branch

https://github.com/rajeev-khoodeeram/JavaFullStack.git

Open the folder in VS Code

Add all required extensions (ex Java extension pack, etc)

https://github.com/rajeev-khoodeeram/JavaFullStack.git

You can check which user you are :
o sudo docker whoami
o sudo docker info

Ubuntu user (Developer 2) is user : rajeevmauritiusgmail
If ask for login:
o docker login (or logout)

o Use browser to login to your account

docker pull rajeevmauritius/sbdockergit:vl

rajeevmauritius
Docker Personal I'Elj eeVmauritlus/deockergit

e Last pushed 27 days ago - .70 i 14
Repositories

Hardened Images Add a description rajeevmauritiusfsbdockergit
Collaborations Add a category Last pushed 27 days ago - $70 - ¥ 14

Settings

Add a description
' General Tags Image Management BETA : !
Default privacy

A Adal & Ao o e s
Add a category

Notifications

Billing Tags General Tags Image Management BETA Collaborators

Usage This repository contains 1 tag(s).

Pulls
Tag 0S Collaborators

Storage

Collaborators will be given push and pull access to this repository.

Username

Current collaborators

Username

rajeevmauritiusgmail

e sudo docker info (checks if docker is working)
e sudo docker build -t rajeevmauritius/sbdockergit:vl.

e docker run-p 8080:8080 rajeevmauritius/sbdockergit:vl

Activities &Y Firefox

*s = localhost:8080/products, localhost:B8080/products X +
&« o O 0 localhost

Actiwities

5 =
= =

F

- JE0M aw Data Headers
Save Copy Collapse All 1l

[pX . .. JSON Raw Data Headers

Save Copy Collapse All Expand All

Anothar [- ﬁ id: null
e *This is another product description® -
- = name : '‘Product 123"

description: '"This is product 123"

1A price: 34.5

e To see all running containers:

o docker ps

0 see all containers (including stopped ones)
o docker ps -a

It the container is still running, stop it first:
o docker stop <container_name_or_id>

Once stopped, remove it using:
o docker rm <container_name_or_id>

Force
o docker rm -f <container_name_or_id>

e Containers

o [var/snap/docker/common/var-lib-docker/containers/
* Images

o [var/snap/docker/common/var-lib-docker/image/
e Volumes

o [var/snap/docker/common/var-lib-docker/volumes/

e sudo snap run docker ps-aq # list all container IDs

e sudo snap run docker rm -f $(sudo snap run docker ps -aq)

e sudo snap run docker images -g list all image IDs

e sudo snap run docker rmi -f $(sudo snap run docker images -q)
e sudo snap run docker volume prune -f

e sudo snap run docker network prune -f

e sudo snap stop | start docker

N

FULL STACKDEV

spring
boot

Write a Docker Compose File for Multi-Container
Setup (App + mySQL)

— =
"',"

e
=
>

Presented by:

o Docker Compose helps manage multiple containers.
o We’ll create a YAML file (docker-compose.yml) to start the app
and database containers together with networking.

e This file defines two services:
o db :
= for the MySQL database

© app .
= Spring Boot app.

e |t configures them to communicate with each other on an isolated
network and ensures the database's data is persistent.

services:
> Run Service
db:
image: mysql:8.0
container_name: mysql_db2
restart: unless-stopped
environment:
MYSQL_ROOT_PASSWORD: '"Rk2025. ;"
MYSQL_DATABASE: test
MYSQL_USER: rajeev

app:
MYSQL_PASSWORD: "Rk2025. ;" P

build: .

ports: _ . o .
_ "3307:3306" image: rajeevmauritius/springboot-mysql-app: latest

volumes: container_name: my_app2
— db_data:/var/lib/mysqgl restart: unless—-stopped
- ./db_1init:/docker-entrypoint-initdb.d ports:

healthcheck: — "8081:8080"
test: ["CMD", "mysqladmin", "ping", "-h", "localhost"]
interval: 10s

environment:
timeout: 5s 7 ING
TN DB_HOST: db
DB_USER: root
DB PASSWORD: '"Rk2025.;"
DB_NAME: test
depends_on:
db:
service_healthy

volumes:

db_data:

This is the core of the file, where you define each container.

db: #db stands for database

image: mysql:8.0: Uses the official MySQL image from Docker Hub.
environment: Sets environment variables that the MySQL image uses to

configure the database

ports:. Maps the container's internal MySQL port (3306) to the host

machine's port (3300)

volumes: Mounts a named volume (db_data) to the MySQL data directory

Inside the container.

- db_data:/var/lib/mysqgl. # where your database is stored

- ./db_init:/docker-entrypoint-initdb.d

entire database.

contains the .sql file for your

e app: # app stands for your spring boot application

e build: .: Tells Docker to build an image for this service from the Dockerfile.

e ports: Maps your application's internal port (8080) to the host machine's
port (8080).

e environment: Sets environment variables for your application to use.

e depends_on: - db: A simple dependency rule that ensures the db service is
started and healthy before the app service is started.

e volumes: Defines the named volume db_data so Docker can manage it.

HOW IT WORKS ?

e You export your database along with your container

e When Developer #2 pulls the Docker image and runs it, Docker :
o runs mysqgl
o executes the .sgl file inside db_init S ——
o runs the tomcat server
o runs the Spring Boot

v db_init

e Reads application.properties
e Reads the docker-compose.yml

Use only one application.properties file

spring.datasource.url=jdbc:mysql://db:3306/my_app_db
Change the host here either as localhost:3306 (host) or db:3306 (container)
o Then rebuild your application using mvn then run docker commands

Use two application.properties file
In this case, you create two properties file :
o application-local.properties (used on your computer)
m spring.datasource.url=jdbc:mysql://localhost:3306/my_app_db
o application.properties (used inside the docker container)
m spring.datasource.url=jdbc:mysqgl://db:3306/my_app_db
Docker Compose automatically creates a network where containers'can
reach each other using their service names.

e Docker Compose creates a private network for all the services defined in
your docker-compose.yml.

e \Within this network, each service is automatically given a hostname that is
the same as its service name (db vs app)

e Internal DNS: Docker provides a simple DNS service for this network. When
your Spring Boot app tries to connect to db:33006, the network's DNS
resolves db to the correct internal IP address of the MySQL container.

e No Port Mapping Needed: Because the communication is happening
internally on this private network

e docker run -p 8080:8080 your-dockerhub-username/your-app- name:tag.

e docker-compose up - -build
* If youwanttorestartthen: _____
o docker-compose down [

[+j R;ﬁ;ing@éké,"_; provenance

~app
Container mysql_db2
s Container my_app2

CdﬁTAINEé ID | iMAGE "éOMmesq1> update student set name="dev saheb" where id=2;

(base) rajeev@Rajeev-KhoodeeiQuery OK, @ rows affected (0.00 sec)
CONTAINER ID IMAGE Rows matched: © Changed: @ Warnings: @
PORTS
55239504d7e4 section3-app Imysql> update students set name="dev saheb" where id=2;
) 4 minutes ago Query OK, 1 row affected (0.00 sec)

8289b8f512fa mysql:8.0 Rows matched: 1 Changed: 1 Warnings: ©

4 MEETES ago
c1f83b6c2937 43ee22767648 mysql>
8 hours ago (base) rajeev@Rajeev-Khoodeeram ~ % docker ps
7828e64e3852 43ee22767648 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
(base) rajeev@Rajeev-Khoodeeram ~ % docker exec -it 8289b8f512fa mysql -uroot -p

O

FULL STACKDEV

spring
boot

Set Up a basic CI/CD pipeline for automated
deployment with Github Actions

////
< -

<

e
-
S =

Presented by:

STEPS IN A CI-CD

Developer
(Push / Pull)

GitHub Repository
.github/workflows/*.yml
(defines jobs, triggers, etc.)

GitHub Actions / Orchestrator
(Reads YAML, schedules jobs)

Each job runs in a separate
runner (VM / container)
build - test - deploy

Deployment Target
(e.g., AWS, Azure, DockerHub)

e Make sure your repo has:
e Your Spring Boot source code
e mvnw Maven wrapper (recommended)
e You must run this command:
o (base) rajeev@Rajeev-Khoodeeram springboot % mvn -N
io.takari:maven:wrapper

e What it does:
o |t creates a Maven Wrapper for your project.

e A Dockerfile at the root

In GitHub Actions (on github !1), secrets can be stored at different levels:

Repository
o Stored per repository.
o Available only to workflows running in that repository.

Environment
o Define deployment targets (e.g., staging, production).

Organisation
o Can be shared with multiple repositories inside that organization.

e Click the £+ “Settings” tab near the top of the repository.
e On the left sidebar, scroll down and click:
o Settings » Secrets and variables » Actions

e You’ll see two tabs: Name Description
O S eC retS DOCKER_USERNAME Your Docker Hub username
O Varl ab leS DOCKER_PASSWORD Your Docker Hub access token

e Under Secrets, click the “New repository secret” button.
e Add your secret

o Name: (all uppercase, no spaces)

o e.g. DOCKER_USERNAME, DOCKER_PASSWORD,etc.

o Value: your actual credential (e.g. your token, password, orkey).

~ SPRINGBOOT
v .github /workflows

s ci-cd.yml

2 .mvn

> .godo

Before that, steps to complete: » aacode
Install the extension GitHub Actions in VS code

> target

Dockerfile

¥ HELP.md
Jenkinsfile
mvnw

&= mvnw.cmd

Create your docker hub Personal access token (PAK)

Create the folder .github/workflows in the root folder of our app
o Create a .github/workflows/ci-cd.yml file in your repo:

% ci-cd.yml X

.github > workflows > %5 ci-cd.yml > {} jobs > {} build-and-push > [J runs-on
GitHub Workflow - YAML GitHub Workflow (github-workflow.json)
name: Docker Git Spring Boot CI/CD

on: jobs:
push: build-and-push:
branches: runs—on: ubuntu-latest

— maln
— develop steps:

— name: Checkout repo
uses: actions/checkout@v3

— 'feature/x'

— name: Set up JDK 17
uses: actions/setup-java@v3
with:
distribution: 'temurin'
java-version: '17'

— name: Build with Maven
run: ./mvnw clean package ——no-transfer-progress

— name: Check DOCKER USERNAME secret
run: |

USERNAME="${{ secrets,DOCKER_USERNAME }}"
echo "Docker username starts with: ${USERNAME:Q:3} wow"

- name: Get latest tag
id: vars
run: |
TAG=$(git describe —--tags —-abbrev=0)

echo "TAG=$TAG" >> $GITHUB_ENV

— name: Build Docker 1image
run: docker build -t rajeevmauritius/dockergitspring-app:${{ github.sha }}

— name: Log in to Docker Hub
uses: docker/login—-action@v?2
with:
username: rajeevmauritius
password: dckr_pat_raA-hs1lxZhJRxz0ODIacnKSrgmPs

— name: Push Docker image
run: docker push rajeevmauritius/dockergitspring-app:${{ github.sha }}

e Explanation:
e Trigger: On push to main or develop, and on Pull Regs

e Checkout: Gets your code

e Setup JDK: Installs Java 17 for Maven

e Build: Compiles your Spring Boot app with Maven

e Build Docker image: Creates a tagged Docker image using the commit S
e Docker Login & Push: Authenticates and pushes image to Docker Hub

e Deploy: Placeholder for your deployment step

Push the .github/workflows/ci-cd.yml file to your repo’s branch

Go to Actions tab in GitHub to watch the workflow run

It successful, check Docker Hub for your pushed image

Important : For the pipeline to work, several aspects must be taken into
consideration:

o All tests must pass or succeed !!
o The JDK must be 17 or 21 (as 24 is not yet supported)

O

FULL STACKDEV

spring
boot

Set Up a basic CI/CD pipeline for automated
deployment with Jenkins

— Z
"',"

e
-
S =

Presented by:

Let’s outline a CI/CD pipeline that:

Checks out your Java Spring Boot app from GitHub

Builds it with Maven

Runs unit tests

Builds a Docker image

Pushes that Docker image to Docker Hub (or your container registry)

Optionally deploys the image to a server or Kubernetes cluster

e Jenkins installed and running

e Jenkins user with Docker installed or Docker daemon accessible (for
building images)

e Jenkins credentials for Docker Hub (username/password or token)
saved in Jenkins Credentials Manager

e A GitHub repo with your Spring Boot app and Dockerfile

e On MAC
o Install the latest LTS version: brew install jenkins-lts
o Start the Jenkins service: brew services start jenkins-lts
o Restart the Jenkins service: brew services restart jenkins-lts

o Update the Jenkins version: brew upgrade jenkins-lts

Jenkinsfile M Dockerfile

Dockerfile > ...

WORKDIR /app

COPY .
RUN mvn clean package -DskipTests

WORKDIR /app

COPY ——from=builder /app/target/*.jar app.jar
POSE 8080
CM) ["java", "_jar", "app-jar"]

e sudo wget -O /etc/apt/keyrings/jenkins-keyring.asc \
https://pkg.jenkins.io/debian-stable/jenkins.io-2023.key

e echo "deb [sighed-by=/etc/apt/keyrings/jenkins-keyring.asc]" \
https://pkg.jenkins.io/debian-stable binary/ | sudo tee \
/etc/apt/sources.list.d/jenkins.list > /dev/null

e sudo apt-get update

e sudo apt-get install jenkins

Jenkinsfile 3
pipeline M
agent any

tools {
maven 'Rajeev-maven'

s |
environment {
PATH = "/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin"
DOCKER_HUB_CREDENTIALS = credentials('docker—-hub-credentials-id"
IMAGE_NAME = 'rajeevmauritius/myapp’ me o - at wil
IMAGE_TAG = "jenkins-${env.BUILD_NUMBER}".

v SPRINGBOOT

.github / workflows
.mvn

.godo

.vscode

db_init

SIc

target
Dockerfile
HELP.md
Jenkinsfile
mvnw

mvnw.cmd

pom.xml
README.md

stages {
stage('Checkout’
steps {

git branch: 'main', url: 'https://github.com/rajeev—khoodeeram/java

stage('Build’
steps {
sh 'mvn clean package -DskipTests'

stage('Test’
steps {

sh 'mvn test'’ _

junit 'target/surefire-reports/*.xml’

stage('Build Docker Image'
steps {
script A
sh 'docker build -t ${IMAGE_NAME}: ${IMAGE_TAG} .

post {
always {
cleanWs()

success
echo 'CI/CD Pipeline succeeded!’

failure {
echo 'CI/CD Pipeline failed!'

Go to Jenkins dashboard » Manage Jenkins » Manage Credentials -
(Global)

Normally it is http://localhost:9090
But if it does not work, then use http://127.0.0.1:9090

ps aux | grep jenkins

(base) rajeev@Rajeev-Khoodeeram ~ % ps aux | grep jenkins

rajeev 77698 0.0 0.0 410063264 192 s@02 R+ 11:02pm 0:00.00
grep jenkins

rajeeyv 77310 0.0 0.4 419548112 70176 27 S 11:01pm 0:07.23
/opt/homebrew/opt/openjdk@21/bin/java -Dmail.smtp.starttls.enable=true -jar /opt
/homebrew/opt/jenkins-1ts/libexec/jenkins.war --httpListenAddress=127.0.0.1 --ht

tpPort=8080

http://localhost8080/
http://127.0.0.1:8080/

77~ CONFIGURING JENKINS

L7 72
7

Getting Started

% Unlock Jenkins

To ensure Jenkins is securely set up by the administrator, a password has been written to
the log (not sure where to find it?) and this file on the server:

/Users/rajeev/.jenkins/secrets/initialAdminPassword

Please copy the password from either location and paste it below.

Customize Jenkins

Plugins extend Jenkins with additional features to support many different needs.

Administrator password

Install suggested Select plugins to

plugins install

Install plugins the Jenkins Select and install plugins most
community finds most useful. suitable for your needs.

AN

\\

/

777777
/777222

//- CEED WITH THE INSTALLATION

e Give it ID: docker-hub-credentials-id (or change the Jenkinsfile
accordingly)

@ Jenkins

Manage Jenkins Credentials System

Global credentials (unrestricted)

Credentials that should be available irrespective of dom

ID Name

[3 docker-hub-credentials-
id boot)

lcon: S M L

Global credentials (unrestricted)

ain specification to requirements matching.

@ Jenkins

rajeevmauritius/****** (This is my first Jenkins with Docker [/ Java Spring

New Item

er an item name

Ent
[rlajeev—springboot J

Select an item type

Freestyle project
Classic, genera |-purpose job type that checks out from up to ¢

post-build steps like archiving artifacts and sending email noti

NSO

\

r_I J Pipeline
Orchestrates long-running activities that can span multiple bur
known as workflows) and/or organizing complex activities that/

))

e Create a new Pipeline job in Jenkins and point it to your Jenkinsfile
(either in repo or directly in the pipeline editor)

e Run the job and watch it build your app, run tests, build and push the
Docker image

@ Jenkins rajeev-springboot

B status () rajeev-springboot

</> Changes @ Jenkins rajeev-springboot #17

[> Build Now D Latest Test Result (no failures)

{03 Configure P link o s
ermalinks B status (+) #17 (Aug11,2025,12:05:35a.m.)

@f Delete Pipeline

<[> Changes

Console Output (\) Started by user Rajeev Khoodeeram

7| Edit Build Information
i ’ ! This run spent;

T Nalata huild #4170

@ hub Explore My Hub

[ﬁ] rajeevmauritius

rajeevmauritius/myapp:17

) Repositories

O Collaborations MANIFEST DIGEST sha256:e4b369e4bf286437ad0fadea5cc63009180372919eea3442205833d469287d10 [):

op Settings

Default privacy
linux/armé4/v8 249.63 MB 2 minutes by

Notifications

Billing Image Layers Vulnerabilities

DON'T FORGET TO DISABLE GITHUB ACTIONS IN CASE YOU SWITCH TO JENKINS

e By default, your Jenkins is only accessible on your private network
(computer)

e To do remote, we will need to add a webhook to GitHub so that when it is
triggered by a push, it will call the web hook.

e (base) rajeev@Rajeev-Khoodeeram ~ % brew install ngrok
e (base) rajeev@Rajeev-Khoodeeram ~ % ngrok http 9090
o ERROR: authentication failed: Usage of ngrok requires a verified

account and authtoken

e You will need to configure ngrok !!

e Login to ngrok
o Go to - https://dashboard.ngrok.com

e Copy your Authtoken
o After logging in, look in the left sidebar » Getting Started - Your
Authtoken.

e (base) rajeev@Rajeev-Khoodeeram ~ % ngrok config add-authtoken
o Paste your token here
o Authtoken saved to configuration file:
/Users/rajeev/Library/Application Support/ngrok/ngrok.yml

|' O ® " rajeev — ngrok http 9090 — 109x24

Account Rajeev Khoodeeram (Plan: Free)

Version 3.30.0

Region United States (us)

Latency 36ms

Web Interface http://127.0.0.1:4040

Forwarding https://refusable-lela-unsharing.ngrok-free.dev

Connections ttl opn el RS p50 pomn
9 0] .00 ©.00 30.06 30.30

HTTP Requests

23:57:35.752 EDT POST //github-webhook/

NOTE THE FORWARDING URL - WE WIiLL
NEED THIS IN GITHUB

e Windows
o https://ngrok.com/download/windows

e Linux
o curl-sSL https://ngrok-agent.s3.amazonaws.com/ngrok.asc \
| sudo tee /etc/apt/trusted.gpg.d/ngrok.asc >/dev/null \
&& echo "deb https://ngrok-agent.s3.amazonaws.com bookworm main" \
| sudo tee /etc/apt/sources.list.d/ngrok.list \
&& sudo apt update \
&& sudo apt install ngrok

o ngrok config add-authtoken <token>

—

[/ /]
24 ==
sy
77777
7

Authentication

Disable "Keep me signed in" 7

Security Realm

Jenkins' own user database

Allow users to signup ?

Authorization

Logged-in users can do anything

Allow anonymous read access

?

SECURITY

Git plugin notifyCommit access tokens

Current access tokens ?

rajeev-jenkins-remote

Add new access token

Git Hooks
/
Allow on Controller 7 /
Allow git hooks to run on the Jenkins Controller //;//
4
Allow on Agents 7 ////ﬁ/
y
Allow git hooks to run on Jenkins Agents ///zﬁﬁ
%’/ﬁf’
W 5
e

=

r
=777

=

e Jenkins job configuration - Build Triggers:
o Check “GitHub hook trigger for GITScm polling”

DockerspringBoot Configuration

e Manage Jenkins - Security - Git Hooks:

Set ug) 2d actions that start your build based on specil
o Check Allow on Controller b aor tr it ar bt

Build periodically 7
GitHub hook trigger for GITScm polling ?

Poll SCM ?

e Security / authentication: Tissr bl remotly (o3, rom)

\-

o Use a webhook secret in GitHub, or temporarily allow anonymous
access for local testing.

-
Jenkins Manage Jenkins Security

Git plugin notifyCommit access tokens

Now, in GitHub
o select your repository —> settings —> web hooks

Payload [as in terminal — see above]

o https://refusable-lela-unsharing.ngrok-free.dev//github-webhook/
CO nte nt type * S B:::e:: ::;nverify SSL certificates when delivering payloads.

O app“CatiOﬂ/jSOn ® Enable SSL verification Disable (not recommended

Which events would you like to trigger this webhook?

* Just the push event.

S e C ret Send me everything.

Let me select individual events.

~~ Active

We will deliver event details when this hook is triggered.

Update webhook Delete webhook

e Jenkins
o You can check Recent Deliveries tab
o In case it does not work, you will get Error 403 Forbidden

Webhooks [Manage webhook

Settings Recent Deliveries

s/ @ 96036ed0-a71f-11f0-8abf-931cfa7bebas4 push

: @ 53f92eb2c—-a71f-111f0-91f15-024e5d7flca3 push

e Github
o We have to configure SECRET settings

(i) There is currently a secret configured for this webhook. If you've lost or forgotten this secret, you can
change it, but be aware that any integrations using this secret will need to be updated.

Change secret

