
FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Team Leader - Build the Docker Image and Run
Locally

TEAM LEADER

The Team Leader :
Initialises the project
Put on GitHub
Put on DockerHub

FIRST THING FIRST : DOCKER ?

A Dockerfile contains instructions to build a Docker image.
defining a self-contained, reproducible environment for our
Spring Boot application.

There are two ways we can write the Dockerfile:
Single stage : You write a single sequence of instructions

the image tends to be bigger so it is less efficient.

Multi stage : You define separate stages, typically one for
building your app and another for the final runtime
environment.

More complex but powerful.

DOCKER - HOW IT WORKS ?

SINGLE STAGE

Here everything — building and running — happens in the
same image, making it larger and less efficient, since all
build tools (like Maven) remain in the final image.

MULTI-STAGE

What happens during docker build:

Stage 1 (builder)
Maven and other heavy build dependencies are installed.
The project is compiled, and a .jar file is generated.

Stage 2 (runner)
Starts from a much smaller image (openjdk:17-jre-slim).
Only copies the compiled JAR from the builder stage (COPY --
from=builder).
No build tools like Maven are included.

STAGE 1: BUILD THE APPLICATION JAR
FROM maven:3.8.7-openjdk-17-slim AS builder
 WORKDIR /app

 # Copy the Maven project file first to leverage Docker cache
 COPY pom.xml .

 # Download dependencies to cache them
 RUN mvn dependency:go-offline

 # Copy the rest of the source code
 COPY src ./src

 # Package the application into a JAR file
 RUN mvn clean package -DskipTests

STEP 1: THE BUILD STAGE (BUILDER)

The first stage is responsible for compiling our Java code and creating the
final executable .jar file. It's like a temporary workshop where we get all the
tools we need to create our product.

FROM: a base image that has all the necessary tools: a Java
Development Kit (JDK) and Maven.
WORKDIR: set the working directory inside the container, where all
subsequent commands will run.
COPY: We copy the pom.xml first. This is a crucial optimization.
RUN: We download the project dependencies using mvn
dependency:go-offline. This caches them.
COPY: We copy the rest of the source code.
RUN: We run the final Maven command to package the application into
a .jar file.

STAGE 2: CREATE A MINIMAL RUNTIME IMAGE

FROM openjdk:17-jre-slim AS runner

 WORKDIR /app

 # Copy the JAR file from the builder stage
 COPY --from=builder /app/target/*.jar app.jar

 # Expose the port the Spring Boot application runs on
 EXPOSE 8080

 # The command to run the application
 CMD ["java", "-jar", "app.jar"]

STEP 2: THE RUNTIME STAGE (RUNNER)

This is the final, production-ready stage. Its goal is to be as small and
secure as possible.

FROM: A base image that only contains the JRE, not the full JDK.

WORKDIR: We set the working directory for our final application.

COPY: We copy the .jar file that was built in the builder stage.

EXPOSE: We inform Docker that our application listens on port 8080.

CMD: We specify the command that will be executed when the container
starts.

SUMMARY : TEAM LEADER
Create the Spring boot project

Run the app without docker

Initialize the local repo.

Write the Dockerfile

Build using maven

Build and test the app with docker

Create an online repo. (Show on Github)

Use git to commit the Spring boot project to the main branch on the remote
repo.

TESTING

HOW TO PUSH TO DOCKER

Make sure, you have created the docker repo.
Build the container :

sudo docker build -t rajeevmauritius/sbdockergit:v1 .
Commit to repo.

docker push rajeevmauritius/sbdockergit:v1
If needs to login, then

docker login
View the container

docker ps -a

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Developer #1 - Working on Windows and uses Git

DEVELOPER#1

DEVELOPER#1 - ENVIRONMENT

Install all the required tools
jdk 21/24
VS Code
git

Make sure Dev#1 has a git account
Will be asked to verify his credential and commit to the git
repository

GET A COPY OF MAIN PROJECT

Create a folder where you want to put the project
cd in that folder

 git clone --branch feature/initial-project --single-branch
https://github.com/rajeev-khoodeeram/JavaFullStack.git

(where initial-project should be MAIN in reality)

Do a clean maven if any problem with Java (we are using JDK 24
here)

 .\mvnw clean install

Run the spring boot project and checks if the /products

https://github.com/rajeev-khoodeeram/JavaFullStack.git

MODIFY PRODUCTCONTROLLER

Dev#1 works in this own branch /feature and commits
git checkout -b feature/product-controller-updated-getProductbyId

Changes the ProductController
add a method to retrieve a product by id (getProduct)

Now the only change is this ProductController file

AUTHSERVICE
In VS Code; open terminal to execute the following :

 git add .

will be required to use git (applied only when using for the first time)
 git config --global user.email "khoodeeram.rajeev@gmail.com"
 git config --global user.name "Developer #1"

 git commit -m "getProductById added by Developer #1"
 git push https://github.com/rajeev-khoodeeram/JavaFullStack.git
feature/product- controller-updated-getProductbyId

if developer 1 is already connected to github...and Team leader has
allowed him as collaborator

Now on github, Developer #1 will create a pull request and add a message

mailto:khoodeeram.rajeev@gmail.com
http://user.name/
https://github.com/rajeev-khoodeeram/JavaFullStack.git

TYPICAL PR → MERGE FLOW

Dev #1
Creates a feature branch
Commits code
Opens a Pull Request (PR) into main (or develop in Git Flow)

Team Leader
Reviews the code (comments, requests changes if needed)
Approves the PR once it meets quality standards

Merging
Option A (common in small/medium teams):

 The team leader clicks “Merge” after approval
Option B (common in larger or more autonomous teams):

 The PR author merges it themselves after approval (if branch
protection rules allow it).

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Dev#2 : Working on Ubuntu (docker)

DEVELOPER #2

DEV#2 : ENVIRONMENT SETUP (1)

Step 1: Install Git and Docker (if not already installed)
 sudo apt update
 sudo apt install git docker.io -y

Then start and enable Docker:
 sudo systemctl start docker
 sudo systemctl enable docker

Give current user permission to run Docker without sudo:
 sudo usermod -aG docker $USER
 newgrp docker

DEV#2 : PROJECT SETUP

Step 2: Clone the GitHub Repository

Create a folder in which the project will be stored
cd inside this folder

git init .
 git clone --branch feature/initial-project --single-branch
https://github.com/rajeev-khoodeeram/JavaFullStack.git

Open the folder in VS Code

Add all required extensions (ex Java extension pack, etc)

https://github.com/rajeev-khoodeeram/JavaFullStack.git

GET THE PROJECT !

You can check which user you are :
 sudo docker whoami
 sudo docker info

Ubuntu user (Developer 2) is user : rajeevmauritiusgmail

If ask for login :
 docker login (or logout)
 Use browser to login to your account

 docker pull rajeevmauritius/sbdockergit:v1

DOCKERHUB REPO.

RUN AND TEST THE APP

sudo docker info (checks if docker is working)

 sudo docker build -t rajeevmauritius/sbdockergit:v1 .

 docker run -p 8080:8080 rajeevmauritius/sbdockergit:v1

SOME DOCKER COMMANDS...

To see all running containers:
docker ps

To see all containers (including stopped ones)
docker ps -a

If the container is still running, stop it first:
docker stop <container_name_or_id>

Once stopped, remove it using:
docker rm <container_name_or_id>

Force
docker rm -f <container_name_or_id>

IF USING SNAP...

Containers
/var/snap/docker/common/var-lib-docker/containers/

Images
/var/snap/docker/common/var-lib-docker/image/

Volumes
/var/snap/docker/common/var-lib-docker/volumes/

sudo snap run docker ps -aq # list all container IDs
sudo snap run docker rm -f $(sudo snap run docker ps -aq)
sudo snap run docker images -q # list all image IDs
sudo snap run docker rmi -f $(sudo snap run docker images -q)
sudo snap run docker volume prune -f
sudo snap run docker network prune -f
sudo snap stop | start docker

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Write a Docker Compose File for Multi-Container
Setup (App + mySQL)

FOLDERS/FILES
Docker Compose helps manage multiple containers.

We’ll create a YAML file (docker-compose.yml) to start the app
and database containers together with networking.

This file defines two services:
db :

for the MySQL database
app :

Spring Boot app .

It configures them to communicate with each other on an isolated
network and ensures the database's data is persistent.

CONTAINERS

SERVICES : DB

 This is the core of the file, where you define each container.

db: #db stands for database
image: mysql:8.0: Uses the official MySQL image from Docker Hub.
environment: Sets environment variables that the MySQL image uses to
configure the database
ports: Maps the container's internal MySQL port (3306) to the host
machine's port (3306)
volumes: Mounts a named volume (db_data) to the MySQL data directory
inside the container.
- db_data:/var/lib/mysql. # where your database is stored
- ./db_init:/docker-entrypoint-initdb.d # contains the .sql file for your
entire database.

SERVICES : APP
app: # app stands for your spring boot application

build: .: Tells Docker to build an image for this service from the Dockerfile.

ports: Maps your application's internal port (8080) to the host machine's
port (8080).

environment: Sets environment variables for your application to use.

depends_on: - db: A simple dependency rule that ensures the db service is
started and healthy before the app service is started.

volumes: Defines the named volume db_data so Docker can manage it.

HOW IT WORKS ?

You export your database along with your container

When Developer #2 pulls the Docker image and runs it , Docker :
runs mysql
executes the .sql file inside db_init
runs the tomcat server
runs the Spring Boot

Reads application.properties
Reads the docker-compose.yml

HOW TO RUN THE APP?
Use only one application.properties file

spring.datasource.url=jdbc:mysql://db:3306/my_app_db
Change the host here either as localhost:3306 (host) or db:3306 (container)

Then rebuild your application using mvn then run docker commands

Use two application.properties file
In this case, you create two properties file :

application-local.properties (used on your computer)
spring.datasource.url=jdbc:mysql://localhost:3306/my_app_db

application.properties (used inside the docker container)
spring.datasource.url=jdbc:mysql://db:3306/my_app_db

Docker Compose automatically creates a network where containers can
reach each other using their service names.

HOW THE DOCKER NETWORK HANDLES COMMUNICATION

Docker Compose creates a private network for all the services defined in
your docker-compose.yml.

Within this network, each service is automatically given a hostname that is
the same as its service name (db vs app)

Internal DNS: Docker provides a simple DNS service for this network. When
your Spring Boot app tries to connect to db:3306, the network's DNS
resolves db to the correct internal IP address of the MySQL container.

No Port Mapping Needed: Because the communication is happening
internally on this private network

RUNNING THE DOCKER APP

docker run -p 8080:8080 your-dockerhub-username/your-app- name:tag.

 docker-compose up - -build
If you want to restart then :

 docker-compose down

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Set Up a basic CI/CD pipeline for automated
deployment with Github Actions

STEPS IN A CI-CD

STEP 1: PREPARE YOUR GITHUB REPO

Make sure your repo has:
Your Spring Boot source code
mvnw Maven wrapper (recommended)
 You must run this command :

 (base) rajeev@Rajeev-Khoodeeram springboot % mvn -N
io.takari:maven:wrapper

What it does:
It creates a Maven Wrapper for your project.

A Dockerfile at the root

GITHUB

In GitHub Actions (on github !!), secrets can be stored at different levels :

Repository
Stored per repository.
Available only to workflows running in that repository.

Environment
Define deployment targets (e.g., staging, production).

Organisation
Can be shared with multiple repositories inside that organization.

STEP 2: CREATE GITHUB SECRETS

Click the ⚙️ “Settings” tab near the top of the repository.
On the left sidebar, scroll down and click:

Settings → Secrets and variables → Actions

You’ll see two tabs:
Secrets
Variables

Under Secrets, click the “New repository secret” button.
Add your secret

Name: (all uppercase, no spaces)
 e.g. DOCKER_USERNAME, DOCKER_PASSWORD,etc.
Value: your actual credential (e.g. your token, password, or key).

Name Description

DOCKER_USERNAME Your Docker Hub username

DOCKER_PASSWORD Your Docker Hub access token

STEP 3: CREATE GITHUB ACTIONS WORKFLOW

Before that, steps to complete :
 Install the extension GitHub Actions in VS code

Create your docker hub Personal access token (PAK)

 Create the folder .github/workflows in the root folder of our app
Create a .github/workflows/ci-cd.yml file in your repo:

.GITHUB/WORKFLOWS/CI-CD.YML (1)

.GITHUB/WORKFLOWS/CI-CD.YML (2)

STEPS

Explanation:
Trigger: On push to main or develop, and on Pull Reqs

Checkout: Gets your code

Setup JDK: Installs Java 17 for Maven

Build: Compiles your Spring Boot app with Maven

Build Docker image: Creates a tagged Docker image using the commit SHA

Docker Login & Push: Authenticates and pushes image to Docker Hub

Deploy: Placeholder for your deployment step

STEP 4: TEST IT

Push the .github/workflows/ci-cd.yml file to your repo’s branch

Go to Actions tab in GitHub to watch the workflow run

If successful, check Docker Hub for your pushed image

Important : For the pipeline to work, several aspects must be taken into
consideration :

All tests must pass or succeed !!
The JDK must be 17 or 21 (as 24 is not yet supported)

FULL STACK DEV

Presented by:

Rajeev Khoodeeram
OCTOBER 2025

Set Up a basic CI/CD pipeline for automated
deployment with Jenkins

REFRESH YOUR MEMORY
Let’s outline a CI/CD pipeline that:

Checks out your Java Spring Boot app from GitHub

Builds it with Maven

Runs unit tests

Builds a Docker image

Pushes that Docker image to Docker Hub (or your container registry)

Optionally deploys the image to a server or Kubernetes cluster

STEP 1: PREREQUISITES

Jenkins installed and running
Jenkins user with Docker installed or Docker daemon accessible (for
building images)
Jenkins credentials for Docker Hub (username/password or token)
saved in Jenkins Credentials Manager
A GitHub repo with your Spring Boot app and Dockerfile

On MAC
Install the latest LTS version: brew install jenkins-lts
Start the Jenkins service: brew services start jenkins-lts
Restart the Jenkins service: brew services restart jenkins-lts
Update the Jenkins version: brew upgrade jenkins-lts

STEP 2: DOCKERFILE

INSTALLING JENKINS ON LINUX

sudo wget -O /etc/apt/keyrings/jenkins-keyring.asc \
https://pkg.jenkins.io/debian-stable/jenkins.io-2023.key

echo "deb [signed-by=/etc/apt/keyrings/jenkins-keyring.asc]" \
 https://pkg.jenkins.io/debian-stable binary/ | sudo tee \
 /etc/apt/sources.list.d/jenkins.list > /dev/null

sudo apt-get update

sudo apt-get install jenkins

STEP 3 : JENKINS FILE (1)

JENKINS FILE (2)

JENKINS FILE (3)

STEP 4: ADD DOCKER HUB CREDENTIALS IN JENKINS

Go to Jenkins dashboard → Manage Jenkins → Manage Credentials →
(Global)

 Normally it is http://localhost:9090
 But if it does not work, then use http://127.0.0.1:9090

 ps aux | grep jenkins

http://localhost8080/
http://127.0.0.1:8080/

CONFIGURING JENKINS

PROCEED WITH THE INSTALLATION

Add Username with password credential for your Docker Hub account

Give it ID: docker-hub-credentials-id (or change the Jenkinsfile
accordingly)

RUN YOUR PIPELINE

Create a new Pipeline job in Jenkins and point it to your Jenkinsfile
(either in repo or directly in the pipeline editor)

Run the job and watch it build your app, run tests, build and push the
Docker image

DON’T FORGET TO DISABLE GITHUB ACTIONS IN CASE YOU SWITCH TO JENKINS

HOW TO EXPOSE YOUR LOCAL JENKINS

By default, your Jenkins is only accessible on your private network
(computer)
To do remote, we will need to add a webhook to GitHub so that when it is
triggered by a push, it will call the web hook.

(base) rajeev@Rajeev-Khoodeeram ~ % brew install ngrok

(base) rajeev@Rajeev-Khoodeeram ~ % ngrok http 9090
ERROR: authentication failed: Usage of ngrok requires a verified
account and authtoken

You will need to configure ngrok !!

SET NGROK AUTHTOKEN

Log in to ngrok
Go to → https://dashboard.ngrok.com

Copy your Authtoken
After logging in, look in the left sidebar → Getting Started → Your
Authtoken.

(base) rajeev@Rajeev-Khoodeeram ~ % ngrok config add-authtoken
Paste your token here
Authtoken saved to configuration file:
/Users/rajeev/Library/Application Support/ngrok/ngrok.yml

RUNNING NGROK

NOTE THE FORWARDING URL - WE WILL

NEED THIS IN GITHUB

INSTALLING NGROK

Windows
 https://ngrok.com/download/windows

Linux
 curl -sSL https://ngrok-agent.s3.amazonaws.com/ngrok.asc \

 | sudo tee /etc/apt/trusted.gpg.d/ngrok.asc >/dev/null \
 && echo "deb https://ngrok-agent.s3.amazonaws.com bookworm main" \
 | sudo tee /etc/apt/sources.list.d/ngrok.list \
 && sudo apt update \
 && sudo apt install ngrok

 ngrok config add-authtoken <token>

SECURITY

ENSURE JENKINS JOB AND SECURITY ARE CORRECT

Jenkins job configuration → Build Triggers:
Check “GitHub hook trigger for GITScm polling”

Manage Jenkins → Security → Git Hooks:
Check Allow on Controller

Security / authentication:
Use a webhook secret in GitHub, or temporarily allow anonymous
access for local testing.

CONFIGURING GITHUB

Now, in GitHub
select your repository —> settings —> web hooks

Payload [as in terminal — see above]
 https://refusable-lela-unsharing.ngrok-free.dev//github-webhook/

Content type *
 application/json

Secret

CONFIGURING GITHUB

Jenkins
You can check Recent Deliveries tab
In case it does not work, you will get Error 403 Forbidden

Github
We have to configure SECRET settings

